Biomedical Engineering
BMEN 6341 Biostatistics (3 semester hours) Introduction to probability; joint, marginal and conditional distributions; entropy and relative entropy (Kullback-Leibler divergence); Markov processes and hidden Markov models; applications to specific problems such as sequence alignment, analysis of gene expression data and protein classification. (3-0) T
BMEN 6351 Biomedical Microdevices (3 semester hours) Introduction to concepts of medical microdevices; design methodology and its applications for diagnostics and therapeutics. (3-0) Y
BMEN 6355 (MSEN 6355) Nanotechnology and Sensors (3 semester hours) Introduction to the concept of nanotechnology, in context toward designing sensors/diagnostic devices. Identifying the impact of nanotechnology in designing "state-of-the art" sensors for healthcare applications. Topics include: nanotechnology and nanomaterials, principles of sensing and transduction and heterogeneous integration toward sensor design. (3-0) Y
BMEN 6372 (MECH 6314, SYSM 6306) Engineering Systems: Modeling & Simulation (3 semester hours) This course will present principles of computational modeling and simulation of systems. General topics covered include: parametric and non-parametric modeling; system simulation; parameter estimation, linear regression and least squares; model structure and model validation through simulation; and, numerical issues in systems theory. Techniques covered include methods from numerical linear algebra, nonlinear programming and Monte Carlo simulation, with applications to general engineering systems. Modeling and simulation software is utilized (MATLAB/SIMULINK). (3-0) Y
BMEN 6373 (EEBM 6373) Anatomy and Human Physiology for Engineers (3 semester hours) This course provides an introduction to anatomy and human physiology for engineers and other non-life scientists. Topics include nervous system, muscle and cardiac function, digestive system, and immune system. (3-0) Y
BMEN 6374 (EEBM 6374) Genes, Proteins and Cell Biology for Engineers (3 semester hours) This course provides an introduction to principles of modern molecular and cellular biology for engineers and other non-life scientists. Topics include genes, protein structure and function, organization of cells and cellular trafficking. (3-0) Y
BMEN 6375 Techniques in Cell and Molecular Biology (3 semester hours) Introduction to cell and molecular laboratory techniques including DNA recombinant technology, protein biochemistry, structural biology, and molecular biology. Intended for engineers and other non-life-scientists. Prerequisite: BMEN 6374 or instructor permission. (3-0) Y
BMEN 6376 (EEBM 6376) Lecture Course in Biomedical Applications of Electrical Engineering (3 semester hours) This course provides an introduction to different areas of biomedical applications of electrical engineering. A special emphasis will be placed on research topics that are actively pursued at UTD. (3-0) Y
BMEN 6377 Introduction to Protein Engineering (3 semester hours) Development of proteins with practical utility will be discussed, using examples and case studies taken from the current literature. Prerequisites: BMEN 6374 or by instructor permission. (3-0) Y
BMEN 6380 (EEBM 6380) Introduction to Cellular Microscopy (3 semester hours) Image formation, diffraction, labeling techniques, fluorescence and image processing techniques will be introduced. (3-0) Y
BMEN 6381 (EEBM 6381) Advanced Concepts in Microscopy (3 semester hours) Continuation of BMEN 6380, with emphasis on advanced approaches such as vectorial diffraction, stochastic aspects of image formation and analysis. Prerequisites: BMEN 6380 or EEBM 6380 or by instructor permission. (3-0) Y
BMEN 6382 Systems Biology (3 semester hours) An interdisciplinary approach to biology. It explores experimental, theoretical, and computational approaches from mathematics, physics, and engineering for the understanding and analysis of biological problems. Prerequisites: BMEN 6374 or instructor permission. (3-0) Y
BMEN 6385 Biomedical Signals and Systems (3 semester hours) Time and Frequency domain analysis; continuous-time and discrete-time signals, linear-time invariant (LTI) systems and their properties. Frequency analysis of: LTI systems, continuous-time signals (Fourier series and Fourier transform) and discrete time signals [discrete Fourier series and discrete-time Fourier transform (DTFT)]. Sampling and signal reconstruction. Discrete Fourier transform (DFT) and fast Fourier transform (FFT). Filter design. MATLAB-based tutorials. Prerequisites: ENGR 2300 and EE 4310. (3-0) Y
BMEN 6386 Biological Processes: Modeling and Simulation (3 semester hours) Introduces fundamental principles to develop and simulate mathematical and computer models of biological systems. Topics include modeling principles [continuous (differential equation models), discrete (Boolean network and Markov model), probabilistic (Bayesian network) and stochastic models] and model optimization. Methods to simulate mathematical biological models using computer programming (software: MATLAB) will be introduced. Prerequisites: MATH 2419 or equivalent. (3-1) Y
BMEN 6387 (BIOL 5376) Applied Bioinformatics (3 semester hours) Genomic information content; data searches and multiple sequence alignment; mutations and distance-based phylogenetic analysis; genomics and gene recognition; polymorphisms and forensic applications; nucleic-acid and protein array analysis; structure prediction of biological macromolecules. Prerequisites: STAT 1342 (introductory statistics) and MATH 1325 and MATH 1326 (2 semesters of calculus). (3-0) T
BMEN 6388 (ENGR 6336, MECH 6313, SYSE 6324) Nonlinear Control Systems (3 semester hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T
BMEN 6389 (BIOL 6385) Computational Biology (3 semester hours) Using computational and statistical methods to analyze biological data, and perform mathematical modeling and computational simulation techniques to understand the biological systems. The course introduces methods in DNA/protein motif discovery, gene prediction, high-throughput sequencing and microarray data analysis, computational modeling gene expression regulation, and biological pathway and network analysis. Prerequisite: (BMEN 6374 and BMEN 6387) or BIOL 5376 or instructor permission. (3-0) Y
BMEN 6390 (BIOL 6390) Metabolic Pathways for Translational Medicine (3 semester hours) This course will provide extensive discussion of major metabolic pathways in human and other experimental models of human diseases with emphasis on biochemical understanding, roles and effects of the pathways in the entire cellular network, and potential application to medicine. Prerequisites: BMEN 6389 or BIOL 6385 or instructor permission. (3-0) T
BMEN 6391 (BIOL 6373) Proteomics (3 semester hours) Protein identification, sequencing, and analysis of post-translational modifications by liquid chromatography/tandem mass spectrometry; determination of protein three dimensional structure by x-ray crystallography; its use in drug design; understanding protein interactions and function using protein chip microarrays. Prerequisite: Undergraduate or graduate biochemistry. (3-0) T
BMEN 6392 Bioinstrumentation and Systems (3 semester hours) Introduction to bioinstrumentation, biomedical signal acquisition, isolation, amplification, and conditioning, biopotential electrodes and amplifiers for ECG, EEG, ENG and EMG. Vascular system dynamics. Transmission and propagation of EM and RF signals around tissue. Biomedical applications. Prerequisites: BMEN 6385 Biomedical Signals and Systems. (3-0) Y
BMEN 6v40 Individual Instruction in Biomedical Engineering (1-9 semester hours) (May be repeated for credit). ([1-9]-0) R
BMEN 6v70 Research in Biomedical Engineering (3-9 semester hours) (May be repeated for credit). For pass/fail credit only. ([3-9]-0) R
BMEN 6v71 Seminars in Biomedical Engineering (1-9 semester hours) (May be repeated for credit). For pass/fail credit only. ([1-9]-0) R
BMEN 6v87 Special Topics in Biomedical Engineering (1-9 semester hours) (May be repeated for credit). ([1-9]-0) S
BMEN 6v98 Thesis (3-9 semester hours) (May be repeated for credit). For pass/fail credit only. ([3-9]-0) S
BMEN 7v87 Special Topics in Biomedical Engineering (1-9 semester hours) (May be repeated for credit). ([1-9]-0) S
BMEN 7v88 Seminars in Biomedical Engineering (1-9 semester hours) (May be repeated for credit). ([1-9]-0) R
BMEN 8v40 Individual Instruction in Biomedical Engineering (1-9 semester hours) (May be repeated for credit). ([1-9]-0) R
BMEN 8v70 Research In Biomedical Engineering (3-9 semester hours) (May be repeated for credit). For pass/fail credit only. ([3-9]-0) R
BMEN 8v99 Dissertation (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
Computer Engineering
CE 5325 (EEDG 5325) Hardware Modeling Using HDL (3 semester hours) This course introduces students to hardware description languages (HDL) beginning with simple examples and describing tools and methodologies. It covers the language, dwelling on fundamental simulation concepts. Students are also exposed to the subset of HDL that may be used for synthesis of custom logic. HDL simulation and synthesis labs and projects are performed using commercial and/or academic VLSI CAD tools. Prerequisite: EE 3320 or equivalent. (3-0) T
CE 5354 (CS 5354, SE 5354) Software Engineering (3 semester hours) Formal specification and program verification. Software life-cycle models and their stages. System and software requirements engineering; user-interface design. Software architecture, design, and analysis. Software testing, validation and quality assurance. Corequisite: CS 5343 (CS 5343 can be taken before or at the same time as CS 5354) (3-0) S
CE 5381 Curriculum Practical Training in Computer Engineering (3 semester hours) This course is required of students who need additional training in engineering practice. Credit does not apply to the 33 hour M.S.C.E. requirement. Consent of Graduate Adviser required. (May be repeated to a maximum of 9 hours). (3-0) S
CE 6301 (EEDG 6301) Advanced Digital Logic (3 semester hours) Modern design techniques for digital logic. Logic synthesis and design methodology. Link between front-end and back-end design flows. Field programmable gate arrays and reconfigurable digital systems. Introduction to testing, simulation, fault diagnosis and design for testability. Prerequisite: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) T
CE 6302 (EEDG 6302) Microprocessor Systems (3 semester hours) Design of microprocessor based systems including I/O and interface devices. Microprocessor architectures. Use of emulators and other sophisticated test equipment. Extensive laboratory work. Prerequisite: EE 4304 or equivalent and background in VHDL/Verilog. (2-3) Y
CE 6303 (EEDG 6303) Testing and Testable Design (3 semester hours) Techniques for detection of failures in digital circuits and systems. Fault modeling and detection. Functional testing and algorithms for automatic test pattern generation (ATPG). Design of easily testable digital systems. Techniques for introducing built-in self test (BIST) capability. Test of various digital modules, such as PLA's, memory circuits, datapath, etc. Prerequisite: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) Y
CE 6304 (CS 6304, EEDG 6304) Computer Architecture (3 semester hours) Trends in processor, memory, I/O and system design. Techniques for quantitative analysis and evaluation of computer systems to understand and compare alternative design choices in system design. Components in high performance processors and computers: pipelining, instruction level parallelism, memory hierarchies, and input/output. Students will undertake a major computing system analysis and design project. Prerequisite: EE 4304 or CS 3340 and C/C++. (3-0) Y
CE 6305 (EEDG 6305) Computer Arithmetic (3 semester hours) Carry look ahead systems and carry save adders. Multipliers, multi-bit recoding schemes, array multipliers, redundant binary schemes, residue numbers, slash numbers. High-speed division and square root circuits. Multi-precision algorithms. The IEEE floating point standard, rounding processes, guard bits, error accumulation in arithmetic processes. Cordic algorithms. Prerequisites: EE 3320 and C/C++. (3-0) Y
CE 6306 (EEDG 6306) Application Specific Integrated Circuits Design (3 semester hours) This course discusses the design of application specific integrated circuits (ASIC) Specific topics include: VLSI system design specification, ASIC circuit structures, synthesis, and implementation of an ASIC digital signal processing (DSP) chip. Prerequisite: EE 3320. (3-0) Y
CE 6307 (EEDG 6307) Fault-Tolerant Digital Systems (3 semester hours) Concepts in hardware and software fault tolerance. Topics include fault models, coding in computer systems, fault diagnosis and fault-tolerant routing, clock synchronization, system reconfiguration, etc. Survey of practical fault-tolerant systems. Prerequisites: EEDG 6301, ENGR 3341 or equivalent. (3-0) R
CE 6308 (CS 6396 and EEDG 6308) Real-Time Systems (3 semester hours) Introduction to real-time applications and concepts. Real-time operating systems and resource management. Specification and design methods for real-time systems. System performance analysis and optimization techniques. Project to specify, analyze, design, implement and test small real-time system. Prerequisite: CS 5348. (3-0) R
CE 6324 (CS 6324) Information Security (3 semester hours) A comprehensive study of security vulnerabilities in information systems and the basic techniques for developing secure applications and practicing safe computing. Topics include common attacking techniques such as buffer overflow, Trojan, virus, etc. UNIX, Windows and Java security. Conventional encryption. Hashing functions and data integrity. Public-key encryption (RSA, Elliptic-Curve). Digital signature. Watermarking for multimedia. Security standards and applications. Building secure software and systems. Management and analysis of security. Legal and ethical issues in computer security. Prerequisite: CS 5348 and CS 5343. (3-0) Y
CE 6325 (EECT 6325) VLSI Design (3 semester hours) Introduction to MOS transistors. Analysis of the CMOS inverter. Combinational and sequential design techniques in VLSI; issues in static, transmission gate and dynamic logic design. Design and layout of complex gates, latches and flip-flops, arithmetic circuits, memory structures. Low power digital design. The method of logical effort. CMOS technology. Use of CAD tools to design, layout, check, extract and simulate a small project. Prerequisites: EE 3320, EE 3301 or equivalent. (3-0) S
CE 6345 (EEDG 6345) Engineering of Packet-Switched Networks (3 semester hours) Detailed coverage, from the point of view of engineering design, of the physical, data-link, network and transport layers of IP (Internet Protocol) networks. This course is a Masters-level introduction to packet networks. Prior knowledge of digital communication systems is strongly recommended. Prerequisite: EE 3350 or equivalent. (3-0) Y
CE 6352 (CS 6352) Performance of Computer Systems and Networks (3 semester hours) Overview of case studies. Quick review of principles of probability theory. Queuing models and physical origin of random variables used in queuing models. Various important cases of the M/M/m/N queuing system. Little's law. The M/G/1 queuing system. Simulation of queuing systems. Product form solutions of open and closed queuing networks. Convolution algorithms and Mean Value Analysis for closed queuing networks. Discrete time queuing systems. Prerequisite: a first course on probability theory. (3-0) S
CE 6353 (CS 6353) Compiler Construction (3 semester hours) Lexical analyzers, context-free grammars. Top-down and bottom-up parsing; shift reduce and LR parsing. Operator-precedence, recursive-descent, predictive, and LL parsing. LR(k), LL(k) and precedence grammars will be covered. Prerequisites: CS 5343 and CS 5349. (3-0) Y
CE 6354 (CS 6354, SE 6354) Advanced Software Engineering (3 semester hours) This course covers advanced theoretical concepts in software engineering and provides an extensive hands-on experience in dealing with various issues of software development. It involves a semester-long group software development project spanning software project planning and management, analysis of requirements, construction of software architecture and design, implementation, and quality assessment. The course will introduce formal specification, component-based software engineering, and software maintenance and evolution. Prerequisites: CE/CS/SE 5354 (or equivalent) and knowledge of Java. (3-0) S
CE 6363 (CS 6363) Design and Analysis of Computer Algorithms (3 semester hours) The study of efficient algorithms for various computational problems. Algorithm design techniques. Sorting, manipulation of data structures, graphs, matrix multiplication, and pattern matching. Complexity of algorithms, lower bounds, NP completeness. Prerequisite: CS 5343. (3-0) S
CE 6367 (CS 6367, SE 6367, SYSM 6310) Software Testing, Validation and Verification (3 semester hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE/CS/SE 5354 or consent of instructor. (3-0) Y
CE 6370 (EEDG 6370) Design and Analysis of Reconfigurable Systems (3 semester hours) Introduction to reconfigurable computing, programmable logic: FPGAS, CPLDs, CAD issues with FPGA based design, reconfigurable systems: emulation, custom computing, and embedded application based computing, static and dynamic hardware, evolutionary design, software environments for reconfigurable systems. Prerequisite: EE 3320 or equivalent. (3-0) R
CE 6375 (EEDG 6375) Design Automation of VLSI Systems (3 semester hours) This course deals with various topics related to the development of CAD tools for VLSI systems design. Algorithms, data structures, heuristics and design methodologies behind CAD tools. Design and analysis algorithms for layout, circuit partitioning, placement, routing, chip floor planning, design rule checking (DRC). Introduction to CAD algorithms for RTL and behavior level synthesis, module generators, and silicon compilation. Prerequisite: CS 5343. Co-requisite: EECT 6325. (3-0) Y
CE 6378 (CS 6378 and TE 6378) Advanced Operating Systems (3 semester hours) Concurrent processing, inter-process communication, process synchronization, deadlocks, introduction to queuing theory and operational analysis, topics in distributed systems and algorithms, checkpointing, recovery, multiprocessor operating systems. Prerequisites: CS 5348 or equivalent, and knowledge of C and UNIX. (3-0) S
CE 6380 (CS 6380) Distributed Computing (3 semester hours) Topics include distributed algorithms, election algorithms, synchronizers, mutual exclusion, resource allocation, deadlocks, Byzantine agreement and clock synchronization, knowledge and common knowledge, reliability in distributed networks, proving distributed programs correct. Prerequisite: CS 5348. (3-0) S
CE 6390 (CS 6390) Advanced Computer Networks (3 semester hours) Survey of recent advancements in high-speed network technologies. Application of quantitative approach to the study of broadband integrated networks including admission control, access control, and quality of service guarantee. Prerequisite: CS 5390. (3-0) S
CE 6392 (CS 6392) Mobile Computing Systems (3 semester hours) Topics include coping with mobility of computing systems, data management, reliability issues, packet transmission, mobile IP, end-to-end reliable communication, channel and other resource allocation, slot assignment, routing protocols, and issues in mobile wireless networks (without base stations). Prerequisite: CS 6378 or CS 6390. (3-0) Y
CE 6397 (CS 6397) Synthesis and Optimization of High-Performance Systems (3 semester hours) A comprehensive study of high-level synthesis and optimization algorithms for designing high performance systems with multiple CPUs or functional units for critical applications such as Multimedia, Signal processing, Telecommunications, Networks, and Graphics applications, etc. Topics including algorithms for architecture-level synthesis, scheduling, resource binding, real-time systems, parallel processor array design and mapping, code generations for DSP processors, embedded systems and hardware/software codesigns. Prerequisite: CS 5343. (3-0) T
CE 6398 (CS 6398, EEDG 6398) DSP Architectures (3 semester hours) Typical DSP algorithms, representation of DSP algorithms, data-graph, FIR filters, convolutions, Fast Fourier Transform, Discrete Cosine Transform, low power design, VLSI implementation of DSP algorithms, implementation of DSP algorithms on DSP processors, DSP applications including wireless communication and multimedia. Prerequisite: CS 5343. (3-0) Y
CE 6399 (CS 6399) Parallel Architectures and Systems (3 semester hours) A comprehensive study of the fundamentals of parallel systems and architecture. Topics including parallel programming environment, fine-grain parallelism such as VLIW and superscalar, parallel computing paradigm of shared-memory, distributed-memory, data-parallel and data-flow models, cache coherence, compiling techniques to improve parallelism, scheduling theory, loop transformations, loop parallelizations and run-time systems. Prerequisite: CS 5348. (3-0) T
CE 7302 Hardware/Software Co-design (3 semester hours) Fundamental concepts in the design of complex digital systems consisting of hardware and software components. Topics include system description and modeling, efficient systems partitioning, hardware/software synthesis, compilation and behavioral optimization, embedded computing systems, telecommunications systems using general-purpose and special-purpose digital signal processors, and rapid prototyping and emulation using field programmable gate arrays. Prerequisites: CE 6301, CE 6302, and CE 6304. (3-0) Y
CE 7303 Hardware Verification (3 semester hours) This course deals with advanced issues related to the formal verification of complex digital systems. Topics include Binary Decision Diagrams (BDDs) and their application to representation and verification of digital systems, use of abstraction and rigorous analysis methods to solve complicated design problems, etc. Prerequisites: CE 6301, CE 6303, and CE 6325. (3-0) Y
CE 7304 (EEDG 7304) Advanced Computer Architecture (3 semester hours) Advanced research topics in, multi-processor, network and reconfigurable architectures. Focuses on current research in the area of computer system architecture to prepare students for a career in computer architecture research. Course will use articles from current technical literature to discuss relevant topics, such as digital signal processors and VLIW processors. Prerequisites: EEDG 6304, CS 5348, ENGR 3341 and knowledge of C/C ++. (3-0) R
CE 7325 (EECT 7325) Advanced VLSI Design (3 semester hours) Advanced topics in VLSI design covering topics beyond the first course (EECT 6325). Topics include: use of high-level design, synthesis, and simulation tools, clock distribution and routing problems, (a) synchronous circuits, low-power design techniques, study of various VLSI-based computations, systolic arrays, etc. Discussions on current research topics in VLSI design. Prerequisite: EECT 6325 or equivalent. (3-0) R
CE 7328 (EEDG 7328) Physical Design of High-Speed VLSI Circuits (3 semester hours) Techniques for the physical design of high-speed VLSI circuits. Topics related to interconnection circuit modeling, performance-driven routing, buffer and wire sizing, placement and floor planning, technology mapping and performance evaluation issues encountered in high-speed VLSI circuit designs. Discussion of state-of-the-art practical industrial design examples. A project related to the development of a prototype CAD tool. Prerequisites: CE/EECT 6325 and knowledge of programming in C. (3-0) T
CE 7v80 Special Topics in Computer Engineering (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) S
CE 8v40 Individual Instruction in Computer Engineering (1-6 semester hours) (May be repeated for credit.) For pass/fail credit only. ([1-6]-0) R
CE 8v70 Research in Computer Engineering (3-9 semester hours) (May be repeated for credit) for pass/fail credit only. ([3-9]-0) R
CE 8v98 Thesis (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
CE 8v99 Dissertation (1-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([1-9]-0) S
Computer Science
CS 5301 (EEGR 5301) Professional and Technical Communication (3 semester hours) CS 5301 utilizes an integrated approach to writing and speaking for the technical professions. The advanced writing components of the course focus on writing professional quality technical documents such as proposals, memos, abstracts, reports, letters, emails, etc. The advanced oral communication components of the course focus on planning, developing, and delivering dynamic, informative and persuasive presentations. Advanced skills in effective teamwork, leadership, listening, multimedia and computer generated visual aids are also emphasized. Graduate students will have a successful communication experience working in a functional team environment using a real time, online learning environment. (3-0) Y
CS 5303 Computer Science I (3 semester hours) Computer science problem solving. The structure and nature of algorithms and their corresponding computer program implementation. Programming in a high level block-structured language (e.g., PASCAL, Ada, C++, or JAVA). Elementary data structures: arrays, records, linked lists, trees, stacks and queues. (3-0) R
CS 5330 Computer Science II (3 semester hours) Basic concepts of computer organization: Numbering systems, two's complement notation, multi-level machine concepts, machine language, assembly programming and optimization, subroutine calls, addressing modes, code generation process, CPU datapath, pipelining, RISC, CISC, performance calculation. Co-requisite: CS 5303. (3-0) R
CS 5333 Discrete Structures (3 semester hours) Mathematical foundations of computer science. Logic, sets, relations, graphs and algebraic structures. Combinatorics and metrics for performance evaluation of algorithms. (3-0) S
CS 5336 Programming Projects in Java (3 semester hours) Overview of the object-oriented philosophy. Implementation of object-oriented designs using the Java programming environment. Emphasis on using the browser to access and extend the Java class library. Prerequisite: CS 5303 or equivalent experience. (3-0) R
CS 5343 Algorithm Analysis & Data Structures (3 semester hours) Formal specifications and representation of lists, arrays, trees, graphs, multilinked structures, strings and recursive pattern structures. Analysis of associated algorithms. Sorting and searching, file structures. Relational data models. Prerequisites: CS 5303, CS 5333. (3-0) S
CS 5348 Operating Systems Concepts (3 semester hours) Processes and threads. Concurrency issues including semaphores, monitors and deadlocks. Simple memory management. Virtual memory management. CPU scheduling algorithms. I/O management. File management. Introduction to distributed systems. Prerequisites: CS 5330 and CS 5343 (may be taken concurrently) and a working knowledge of C and Unix. (3-0) S
CS 5349 Automata Theory (3 semester hours) Deterministic and nondeterministic finite automata; regular expressions, regular sets, context-free grammars, pushdown automata, context free languages. Selected topics from Turing Machines and undecidability. Prerequisite: CS 5333. (3-0) S
CS 5354 (CE 5354, SE 5354) Software Engineering (3 semester hours) Formal specification and program verification. Software life-cycle models and their stages. System and software requirements engineering; user-interface design. Software architecture, design, and analysis. Software testing, validation, and quality assurance. Corequisite: CS 5343 (CS 5343 can be taken before or at the same time as CS 5354) (3-0) S
CS 5375 Principles of UNIX (3 semester hours) Design and history of the UNIX operating system. Detailed study of process and file system data structures. Shell programming in UNIX. Use of process-forking functionality of UNIX to simplify complex problems. Interprocess communication and coordination. Device drivers and streams as interfaces to hardware features. TCP/IP and other UNIX inter-machine communication facilities. Prerequisite: CS 3335. (3-0) S
CS 5390 Computer Networks (3 semester hours) The design and analysis of protocols for computer networking. Topics include: network protocol design and composition via layering, contention resolution in multi-access networks, routing metrics and optimal path searching, traffic management, global network protocols; dealing with heterogeneity and scalability. Prerequisite: CS 5343. (3-0) S
CS 5v71 Cooperative Education (1-3 semester hours) Placement in a faculty-supervised work environment in industry or government. Sites may be local or out-of-state. The cooperative education program provides exposure to a professional working environment, application of theory to working realities, and an opportunity to test skills and clarify goals. Experience gained may also serve as a work credential after graduation. (May be repeated to a maximum of 9 credit hours.) Departmental approval is required. ([1-3]-0) S
CS 5v81 Special Topics in Computer Science (1-9 semester hours) Selected topics in Computer Science. (May be repeated to a maximum of 9 credit hours.) ([1-9]-0) S
CS 6301 Special Topics in Computer Science (3 semester hours) Topics will vary. (May be repeated for credit) (3-0) S
CS 6304 (CE 6304, EEDG 6304) Computer Architecture (3 semester hours) Trends in processor, memory, I/O and system design. Techniques for quantitative analysis and evaluation of computer systems to understand and compare alternative design choices in system design. Components in high performance processors and computers: pipelining, instruction level parallelism, memory hierarchies, and input/output. Students will undertake a major computing system analysis and design project. Prerequisite: EE 4304 or CS 3340 and C/C++. (3-0) Y
CS 6320 Natural Language Processing (3 semester hours) This course covers state-of-the-art methods for natural language processing. After an introduction to the basics of syntax, semantic, and discourse analysis, the focus shifts to the integration of these modules into natural-language processing systems. In addition to natural language understanding, the course presents advanced material on lexical knowledge acquisition, natural language generation, machine translation, and parallel processing of natural language. Prerequisite: CS 5343. (3-0) Y
CS 6321 Discourse Processing (3 semester hours) Introduction to discourse processing from natural language texts. Automatic clustering of utterances into coherent units (segments) with hierarchical structures. State-of-the-art research in textual cohesion, coherence, and discourse understanding. Included topics are anaphoric reference and ellipsis, notion of textual context, and relationship between tense, aspect, and discourse states. Prerequisite: CS 6320 or consent of the instructor. (3-0) T
CS 6322 Information Retrieval (3 semester hours) This course covers modern techniques for storing and retrieving unformatted textual data and providing answers to natural language queries. Current research topics and applications of information retrieval in data mining, data warehousing, text mining, digital libraries, hypertext, multimedia data, and query processing are also presented. Prerequisite: CS 5343. (3-0) Y
CS 6324 (CE 6324) Information Security (3 semester hours) A comprehensive study of security vulnerabilities in information systems and the basic techniques for developing secure applications and practicing safe computing. Topics include common attacking techniques such as buffer overflow, Trojan, virus, etc. UNIX, Windows and Java security. Conventional encryption. Hashing functions and data integrity. Public-key encryption (RSA, Elliptic-Curve). Digital signature. Watermarking for multimedia. Security standards and applications. Building secure software and systems. Management and analysis of security. Legal and ethical issues in computer security. Prerequisite: CS 5348 and CS 5343. (3-0) Y
CS 6325 Introduction to Bioinformatics (3 semester hours) The course provides a broad overview of the bioinformatics field. Comprehensive introduction to molecular biology and molecular genetics for a program of study in bioinformatics. Discussion of elementary computer algorithms in biology (e.g., sequence alignment and gene finding). Biological databases, data analysis and management. Prerequisite: Knowledge equivalent to CS 2302. (3-0) T
CS 6333 Algorithms in Computational Biology (3 semester hours) The principles of algorithm design for biological datasets, and analysis of influential problems and techniques. Biological sequence analysis, gene finding, RNA folding, protein folding, sequence alignment, genome assembly, comparative genomics, phylogenetics, clustering algorithms. Prerequisite: CS 6325. (3-0) S
CS 6348 Data and Applications Security (3 semester hours) The course will teach principles, technologies, tools and trends for data and applications security. Topics to be covered include: confidentiality, privacy and trust management; secure databases; secure distributed systems; secure multimedia and object systems; secure data warehouses; data mining for security applications; assured information sharing; secure knowledge management; secure collaboration; secure digital libraries; trustworthy semantic web; biometrics; digital forensics; secure e-commerce; secure sensor information management and secure social networks. Students will take one system or application and develop a secure version of that system or application for the programming project. Prerequisite: CS 5343 (3-0) Y
CS 6349 Network Security (3 semester hours) This course covers theoretical and practical aspects of network security. The topics include use of cryptography for building secure communication protocols and authentication systems; security handshake pitfalls, Kerberos and PKI, security of TCP/IP protocols including IPsec, BGP security, VPNs, IDSes, firewalls, and anonymous routing; security of TCP/IP applications; wireless LAN security; denial-of-service defense. Students are required to do a programming project building a distributed application with certain secure communication features and required to participate in several network security lab exercises and cyber war games. Prerequisite: CS 5390 (3-0) Y
CS 6352 (CE 6352) Performance of Computer Systems and Networks (3 semester hours) Overview of case studies. Quick review of principles of probability theory. Queuing models and physical origin of random variables used in queuing models. Various important cases of the M/M/m/N queuing system. Little's law. The M/G/1 queuing system. Simulation of queuing systems. Product form solutions of open and closed queuing networks. Convolution algorithms and Mean Value Analysis for closed queuing networks. Discrete time queuing systems. Prerequisite: a first course on probability theory. (3-0) S
CS 6353 (CE 6353) Compiler Construction (3 semester hours) Lexical analyzers, context-free grammars. Top-down and bottom-up parsing; shift reduce and LR parsing. Operator-precedence, recursive-descent, predictive, and LL parsing. LR(k), LL(k) and precedence grammars will be covered. Prerequisites: CS 5343 and CS 5349. (3-0) Y
CS 6354 (CE 6354, SE 6354) Advanced Software Engineering (3 semester hours) This course covers advanced theoretical concepts in software engineering and provides an extensive hands-on experience in dealing with various issues of software development. It involves a semester-long group software development project spanning software project planning and management, analysis of requirements, construction of software architecture and design, implementation, and quality assessment. The course will introduce formal specification, component-based software engineering, and software maintenance and evolution. Prerequisites: CE/CS/SE 5354 (or equivalent) and knowledge of Java. (3-0) S
CS 6356 (SE 6356, SYSM 6308) Software Maintenance, Evolution, and Re-Engineering (3 semester hours) Principles and techniques of software maintenance. Impact of software development process on software justifiability, maintainability, evolvability, and planning of release cycles. Use of very high-level languages and dependencies for forward engineering and reverse engineering. Achievements, pitfalls, and trends in software reuse, reverse engineering, and re-engineering. Prerequisite: CE/CS/SE 5354. (3-0) Y
CS 6359 (SE 6359) Object-Oriented Analysis and Design (3 semester hours) Analysis and practice of modern tools and concepts that can help produce software that is tolerant of change. Consideration of the primary tools of encapsulation and inheritance. Construction of software-ICs which show the parallel with hardware construction. Prerequisites: CE/CS/SE 5354 and either CS 3335 or CS 5336. (3-0) S
CS 6360 (SE 6360) Database Design (3 semester hours) Methods, principles, and concepts that are relevant to the practice of database software design. Database system architecture; conceptual database models; relational and object-oriented databases; database system implementation; query processing and optimization; transaction processing concepts, concurrency, and recovery; security. Prerequisite: CS 5343. (3-0) S
CS 6361 (SE 6361, SYSM 6309) Advanced Requirements Engineering (3 semester hours) System and software requirements engineering. Identification, elicitation, modeling, analysis, specification, management, and evolution of functional and non-functional requirements. Strengths and weaknesses of different techniques, tools, and object-oriented methodologies. Interactions and trade-offs among hardware, software, and organization. System and sub-system integration with software and organization as components of complex, composite systems. Transition from requirements to design. Critical issues in requirements engineering. Prerequisite: CE/CS/SE 5354. (3-0) S
CS 6362 (SE 6362) Advanced Software Architecture and Design (3 semester hours) Concepts and methodologies for the development, evolution, and reuse of software architecture and design, with an emphasis on object-orientation. Identification, analysis, and synthesis of system data, process, communication, and control components. Decomposition, assignment, and composition of functionality to design elements and connectors. Use of non-functional requirements for analyzing trade-offs and selecting among design alternatives. Transition from requirements to software architecture, design, and to implementation. State of the practice and art. Prerequisite: CE/CS/SE 5354. (3-0) S
CS 6363 (CE 6363) Design and Analysis of Computer Algorithms (3 semester hours) The study of efficient algorithms for various computational problems. Algorithm design techniques. Sorting, manipulation of data structures, graphs, matrix multiplication, and pattern matching. Complexity of algorithms, lower bounds, NP completeness. Prerequisite: CS 5343. (3-0) S
CS 6364 Artificial Intelligence (3 semester hours) Design of machines that exhibit intelligence. Particular topics include: representation of knowledge, vision, natural language processing, search, logic and deduction, expert systems, planning, language comprehension, machine learning. Prerequisite: CS 5343. (3-0) Y
CS 6365 Data and Text Mining for Computational Biology (3 semester hours) The course introduces data and text mining as practiced currently in the bioinformatics field. Major topics include: sequence alignment for determining similarity between proteins and genes; properties of similarities and distances; genomic, proteomic, and text databases in the real world; finding patterns (motifs) in genes and proteins; differentiating between valid patterns and noise; classification; clustering and its application to phylogenetic trees; and selected topics from text mining. Prerequisite: CS 6325. (3-0) Y
CS 6366 Computer Graphics (3 semester hours) Device and logical coordinate systems. Geometric transformations in two and three dimensions. Algorithms for basic 2-D drawing primitives, such as Brensenham's algorithm for lines and circles, Bezier and B-Spline functions for curves, and line and polygon clipping algorithms. Perspectives in 3-D, and hidden-line and hidden-face elimination, such as Painter's and Z-Buffer algorithms. Fractals and the Mandelbrot set. Prerequisites: CS 5330, CS 5343, and MATH 2418 (linear algebra). (3-0) Y
CS 6367 (CE 6367, SE 6367, SYSM 6310) Software Testing, Validation and Verification (3 semester hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE/CS/SE 5354 or consent of instructor. (3-0) Y
CS 6368 Telecommunication Network Management (3 semester hours) In-depth study of network management issues and standards in telecommunication networks. OSI management protocols including CMIP, CMISE, SNMP, and MIB. ITU's TMN (Telecommunication Management Network) standards, TMN functional architecture and information architecture. NMF (Network Management Forum) and service management, service modeling and network management API. Issues of telecommunication network management in distributed processing environment. Prerequisite: One of CS 5390, CS 6390, CS 6385 or equivalent. (3-0) Y
CS 6369 Complexity of Combinatorial Algorithms (3 semester hours) Topics include bounded reducibility and completeness, approximation algorithms and heuristics for NP-hard problems, randomized algorithms, additional complexity classes. Prerequisite: CS 6363. (3-0) T
CS 6371 Advanced Programming Languages (3 semester hours) Functional programming, Lambda calculus, logic programming, abstract syntax, denotational semantics of imperative languages, fixpoints semantics, verification of programs, partial evaluation, interpretation and automatic compilation, axiomatic semantics, applications of semantics to software engineering. Prerequisites: CS 5343, CS 5349. (3-0) S
CS 6373 Intelligent Systems (3 semester hours) Logical formalizations of knowledge for the purpose of implementing intelligent systems that can reason in a way that mimics human reasoning. Topics include: syntax and semantics of common logic, description logic, modal epistemic logic; reasoning about uncertainties, beliefs, defaults and counterfactuals; reasoning within contexts; implementations of knowledge base and textual inference reasoning systems; and applications. Prerequisite: CS 5343. (3-0) Y
CS 6374 Computational Logic (3 semester hours) Methods and algorithms for the solution of logic problems. Topics include problem formulation in first order logic and extensions, theorem proving algorithms, polynomially solvable cases, logic programming, and applications. Prerequisites: CS 5343, and knowledge of C. (3-0) Y
CS 6375 Machine Learning (3 semester hours) Algorithms for training perceptions and multi-layer neural nets: back propagation, Boltzmann machines, and self-organizing nets. The ID3 and the Nearest Neighbor algorithms. Formal models for analyzing learnability: exact identification in the limit and probably approximately correct (PAC) identification. Computational limitations of learning machines. Prerequisite: CS 5343. (3-0) Y
CS 6376 Parallel Processing (3 semester hours) Topics include parallel machine models, parallel algorithms for sorting, searching and matrix operations. Parallel graph algorithms. Selected topics in parallel processing. Prerequisite: CS 6363. (3-0) T
CS 6377 Introduction to Cryptography (3 semester hours) This course covers the basic aspects of modern cryptography, including block ciphers, pseudorandom functions, symmetric encryption, Hash functions, message authentication, number-theoretic primitives, public-key encryption, digital signatures and zero knowledge proofs. Prerequisites: CS 5333 and CS 5343. (3-0) T
CS 6378 (CE 6378 and TE 6378) Advanced Operating Systems (3 semester hours) Concurrent processing, inter-process communication, process synchronization, deadlocks, introduction to queuing theory and operational analysis, topics in distributed systems and algorithms, checkpointing, recovery, multiprocessor operating systems. Prerequisites: CS 5348 or equivalent; knowledge of C and UNIX. (3-0) S
CS 6379 Biological Database Systems and Data Mining (3 semester hours) Relational data models and database management systems; theories and techniques of constructing relational databases to store biological data, including sequences, structures, genetic linkages and maps, and signal pathways. Introduction to a relational database query language (SQL) with emphasis on answering biologically important questions. Summary of current biological databases. Data integration from various sources and security. Novel data mining methods in bioinformatics with an emphasis on protein structure prediction, homology search, genomic sequence analysis, gene finding and gene mapping. Future directions for biological database development. Prerequisites: BIOL6373/BMEN 6391, BIOL 5381, and CS 5343 or consent of the instructor. (3-0) T
CS 6380 (CE 6380) Distributed Computing (3 semester hours) Topics include distributed algorithms, election algorithms, synchronizers, mutual exclusion, resource allocation, deadlocks, Byzantine agreement and clock synchronization, knowledge and common knowledge, reliability in distributed networks, proving distributed programs correct. Prerequisite: CS 5348. (3-0) S
CS 6381 Combinatorics and Graph Algorithms (3 semester hours) Fundamentals of combinatorics and graph theory. Combinatorial optimization, optimization algorithms for graphs (max flow, shortest routes, Euler tour, Hamiltonian tour). Prerequisites: CS 5343, CS 6363. (3-0) T
CS 6382 Theory of Computation (3 semester hours) Formal models of computation. Recursive function theory. Undecidability and incompleteness. Selected topics in theory of computation. Prerequisite: Consent of Instructor. (3-0) Y
CS 6383 Computational Systems Biology (3 semester hours) The course will provide a system-level understanding of biological systems by analyzing biological data using computational techniques. The major topics include: computational inference of biological networks (regulatory, protein interactions, and metabolic) and the effects of biological networks in cellular processes, development, and disease. (3-0) T
CS 6384 Computer Vision (3 semester hours) Algorithms for extracting information from digital pictures. Particular topics include: analysis of motion in time varying image sequences, recovering depth from a pair of stereo images, image separation, recovering shape from textured images and shadows, object matching techniques, model based recognition, the Hough transform. Prerequisite: CS 5343. (3-0) Y
CS 6385 (TE 6385) Algorithmic Aspects of Telecommunication Networks (3 semester hours) This is an advanced course on topics related to the design, analysis, and development of telecommunications systems and networks. The focus is on the efficient algorithmic solutions for key problems in modern telecommunications networks, in centralized and distributed models. Topics include: main concepts in the design of distributed algorithms in synchronous and asynchronous models, analysis techniques for distributed algorithms, centralized distributed solutions for handling design and optimization problems concerning network topology, architecture, routing, survivability, reliability, congestion, dimensioning and traffic management in modern telecommunication networks. Prerequisites: CS 5343, CS 5348, and TE 3341 or equivalents. (3-0) Y
CS 6386 Telecommunication Software Design (3 semester hours) Programming with sockets and remote procedure calls, real time programming concepts and strategies. Operating system design for real time systems. Encryption, file compression, and implementation of fire walls. An in-depth study of TCP/IP implementation. Introduction to discrete event simulation of networks. Prerequisites: CS 5390. (3-0) Y
CS 6387 (SE 6387) Advanced Software Engineering Project (3 semester hours) This course is intended to provide experience in a group project that requires advanced technical solutions, such as distributed multi-tier architectures, component-based technologies, automated software engineering, etc., for developing applications, such as web-based systems, knowledge-based systems, real-time systems, etc. The students will develop and maintain requirements, architecture and detailed design, implementation, and testing and their traceability relationships. Best practices in software engineering will be applied. Prerequisites: CS/SE 6361 or SYSM 6309, and CS/SE 6362. Corequisite: CE/CS/SE 6367 or SYSM 6310. (3-0) S
CS 6388 (SE 6388) Software Project Planning and Management (3 semester hours) Techniques and disciplines for successful management of software projects. Project planning and contracts. Advanced cost estimation models. Risk management process and activities. Advanced scheduling techniques. Definition, management, and optimization of software engineering processes. Statistical process control. Software configuration management. Capability Maturity Model Integration (CMMI). Prerequisite: CE/CS/SE 5354. (3-0) Y
CS 6389 (SE 6389) Formal Methods and Programming Methodology (3 semester hours) Formal techniques for building highly reliable systems. Use of abstractions for concisely and precisely defining system behavior. Formal logic and proof techniques for verifying the correctness of programs. Hierarchies of abstractions, state transition models, Petri Nets, communicating processes. Operational and definitional specification languages. Applications to reliability-critical, safety-critical, and mission-critical systems, ranging from commercial computer communication systems to strategic command control systems. Prerequisite: CE/CS/SE 5354. (3-0) Y
CS 6390 (CE 6390) Advanced Computer Networks (3 semester hours) Survey of recent advancements in high-speed network technologies. Application of quantitative approach to the study of broadband integrated networks including admission control, access control, and quality of service guarantee. Prerequisite: CS 5390. (3-0) S
CS 6391 Optical Networks (3 semester hours) Enabling technologies for optical networks. Wavelength-division multiplexing. Broadcast-and-select optical networks. Wavelength-routed optical networks. Virtual topology design. Routing and wavelength assignment. Network control and management. Protection and restoration. Wavelength conversion. Traffic grooming. Photonic packet switching. Optical burst switching. Survey of recent advances in optical networking. Prerequisite: CS 5390 AND one of CS 6352, CS 6385, CS 6390. (3-0) Y
CS 6392 (CE 6392) Mobile Computing Systems (3 semester hours) Topics include coping with mobility of computing systems, data management, reliability issues, packet transmission, mobile IP, end-to-end reliable communication, channel and other resource allocation, slot assignment, routing protocols, and issues in mobile wireless networks (without base stations). Prerequisite: CS 6378 or CS 6390. (3-0) Y
CS 6393 Advanced Algorithms in Biology (3 semester hours) Recent advanced topics in algorithms in biology will be discussed. Topics will be chosen from: sorting and transformational operations on strings and permutations, structural analysis of proteins, pooling design and nonadaptive group testing, approximation algorithms, and complexity issues. Prerequisites: CS 6363 and CS 6325. (3-0) Y
CS 6394 Digital Telephony (3 semester hours) Introduction and overview emphasizing the advantages of digital voice networks. Voice digitization. Digital transmission, multiplexing, and switching. Rearrangeable switching networks. Digital modulation for radio systems. Network operation issues: synchronization, control; integration of voice and data, packet switching and traffic analysis. (3-0) Y
CS 6395 Speech Recognition, Synthesis, and Understanding (3 semester hours) Basic speech processing techniques: isolated word recognition using dynamic time warping, acoustic modeling using hidden Markov models, statistical language modeling, search algorithms in large vocabulary continuous speech recognition, components in text-to-speech systems, architecture and components in spoken dialog systems. Prerequisite: CS 5343. (3-0) T
CS 6396 (CE 6308 and EEDG 6308) Real-Time Systems (3 semester hours) Introduction to real-time applications and concepts. Real-time operating systems and resource management. Specification and design methods for real-time systems. System performance analysis and optimization techniques. Project to specify, analyze, design, implement and test small real-time system. Prerequisite: CS 5348. (3-0) R
CS 6397 (CE 6397) Synthesis and Optimization of High-Performance Systems (3 semester hours) A comprehensive study of the high-level synthesis and optimization algorithms for designing high performance systems with multiple CPUs or functional units for critical applications such as Multimedia, Signal processing, Telecommunications, Networks, and Graphics applications, etc. Topics including algorithms for architecture-level synthesis, scheduling, resource binding, real-time systems, parallel processor array design and mapping, code generations for DSP processors, embedded systems and hardware/software codesigns. Prerequisite: CS 5343. (3-0) T
CS 6398 (CE 6398, EEDG 6398) DSP Architectures (3 semester hours) Typical DSP algorithms, representation of DSP algorithms, data-graph, FIR filters, convolutions, Fast Fourier Transform, Discrete Cosine Transform, low power design, VLSI implementation of DSP algorithms, implementation of DSP algorithms on DSP processors, DSP applications including wireless communication and multimedia. Prerequisite: CS 5343. (3-0) Y
CS 6399 (CE 6399) Parallel Architectures and Systems (3 semester hours) A comprehensive study of the fundamentals of parallel systems and architecture. Topics including parallel programming environment, fine-grain parallelism such as VLIW and superscalar, parallel computing paradigm of shared-memory, distributed-memory, data-parallel and data-flow models, cache coherence, compiling techniques to improve parallelism, scheduling theory, loop transformations, loop parallelizations and run-time systems. Prerequisite: CS 5348. (3-0) T
CS 6v81 Independent Study in Computer Science (1-9 semester hours) Topics vary from semester to semester. May be repeated for credit as topics vary. ([1-9]-0) S
CS 7301 (SE 7301) Recent Advances in Computing (3 semester hours) Advanced topics and publications will be selected from the theory, design, and implementation issues in computing. May be repeated for credit as topics vary. Prerequisite: Consent of the instructor. (3-0) Y
CS 8v02 Topics in Computer Science (1-6 semester hours) (May be repeated to a maximum of 9 hours.) ([1-6]-0) S
CS 8v07 Research (1-9 semester hours) Open to students with advanced standing subject to approval of the graduate adviser. May be repeated for credit (9 hours maximum). ([1-9]-0) S
CS 8v98 Thesis (3-9 semester hours) (May be repeated for credit.) ([3-9]-0) S
CS 8v99 Dissertation (1-9 semester hours) (May be repeated for credit) ([1-9]-0) S
Engineering and Computer Science COOP
ECSC 5177 CS IPP Assignment (1 semester hour) Work in an approved, supervised, computer science position. Students will complete an IPP Work Report including a written Narrative focusing on the accomplishments and learning gained through the IPP experience. May be repeated. (1-0) Y
ECSC 5179 ENG IPP Assignment (1 semester hour) Work in an approved, supervised, engineering position. Students will complete an IPP Work Report including a written Narrative focusing on the accomplishments and learning gained through the IPP experience. May be repeated. (1-0) Y
Electrical Engineering: Biomedical Applications of Electrical Engineering
EEBM 6373 (BMEN 6373) Anatomy and Human Physiology for Engineers (3 semester hours) This course provides an introduction to anatomy and human physiology for engineers and other non-life-scientists. Topics include nervous system, muscle and cardiac function, digestive system, and immune system. (3-0) Y
EEBM 6374 (BMEN 6374) Genes, Proteins and Cell Biology for Engineers (3 semester hours) This course provides an introduction to principles of modern molecular and cellular biology for engineers and other non-life scientists. Topics include genes, protein structure and function, organization of cells and cellular trafficking. (3-0) Y
EEBM 6376 (BMEN 6376) Lecture Course in Biomedical Applications of Electrical Engineering (3 semester hours) This course provides an introduction to different areas of biomedical applications of electrical engineering. A special emphasis will be placed on research topics that are actively pursued at UTD. (3-0) Y
EEBM 6380 (BMEN 6380) Introduction to Cellular Microscopy (3 semester hours) Image formation, diffraction, labeling techniques, fluorescence and image processing techniques will be introduced. (3-0) Y
EEBM 6381 (BMEN 6381) Advanced Concepts in Microscopy (3 semester hours) Continuation of EEBM 6380, with emphasis on advanced approaches such as vectorial diffraction, stochastic aspects of image formation and analysis. Prerequisites: EEBM 6380 or BMEN 6380 or by instructor permission. (3-0) Y
EEBM 7v87 Special Topics in Biomedical Applications of Electrical Engineering (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
Electrical Engineering: Circuits and Systems
EECT 5321 Introduction to Circuits and Systems (3 semester hours) Continuation of EEMF 5320. Topics include analog circuits, digital circuits, digital systems and communication systems. Credit does not apply to the 33 hour M.S.E.E. requirement. (3-0) R
EECT 5340 Analog Integrated Circuit Analysis and Design (3 semester hours) Application of MOSFET and BJT large-signal and small-signal models to analyze and design amplifiers, analysis and design of current mirrors and differential amplifiers, analysis of frequency response of amplifiers, and feedback theories. Prerequisite: EE 3311 or equivalent. (3-0) Y
EECT 5385 Analog Filters (3 semester hours) This course aims at bridging the intermediate-level and the advanced-level knowledge in analog filter design. It moves from basic theory of analog passive filters to theoretical and practical aspects of active, switched-capacitor, and continuous time filters. For active solutions the focus is on integrated implementations on silicon. Prerequisites: EE 3301 and EE 3111. (3-0) Y
EECT 6325 (CE 6325) VLSI Design (3 semester hours) Introduction to MOS transistors. Analysis of the CMOS inverter. Combinational and sequential design techniques in VLSI; issues in static, transmission gate and dynamic logic design. Design and layout of complex gates, latches and flip-flops, arithmetic circuits, memory structures. Low power digital design. The method of logical effort. CMOS technology. Use of CAD tools to design, layout, check, extract and simulate a small project. Prerequisites: EE 3320, EE 3301 or equivalent. (3-0) S
EECT 6326 Analog Integrated Circuit Design (3 semester hours) Further treatment on the use of MOSFET and BJT large signal and small signal models to analyze and design analog integrated circuits. Topics include advanced current mirrors, references, frequency response of single-stage and differential amplifiers, stability and compensation of amplifiers, design of two-stage amplifiers, common mode feedback, and introduction of noise analysis. Use of CAD tools to simulate and design analog integrated circuits. Prerequisite: EE 4340 or EECT 5340. (3-0) S
EECT 6378 Power Management Circuits (3 semester hours) This course introduces different circuits related to power management systems. Topics include analysis and design of voltage references, magnetics, and different dc-dc converters including: switched-mode power converters, linear regulators and switched-capacitor charge pumps. Use of CAD tools to design and simulate power management circuits. Prerequisite: EECT 6326 or equivalent. (3-0) Y
EECT 6379 Energy Harvesting, Storage and Powering for Microsystems (3 semester hours) This course studies the electrical characteristics of various renewable energy sources and the corresponding approaches on harvesting and storage, with emphasis on the imposed requirements of microscale dimension. They are followed by the discussion on power conditioning and cross-layer energy/power management with circuit implementations. Prerequisite: EE 3311 or equivalent. (3-0) Y
EECT 7325 (CE 7325) Advanced VLSI Design (3 semester hours) Advanced topics in VLSI design covering topics beyond the first course (EECT 6325). Topics include: use of high-level design, synthesis, and simulation tools, clock distribution and routing problems, (a) synchronous circuits, low-power design techniques, study of various VLSI-based computations, systolic arrays, etc. Discussions on current research topics in VLSI design. Prerequisite: EECT 6325 or equivalent. (3-0) R
EECT 7326 Advanced Analog Integrated Circuit Design (3 semester hours) Advanced topics in analog design including a rigorous treatment of noise, feedback and distortion in analog circuits. Selected topics from other advanced topics such as continuous-time filter, oscillator, phase-locked loop (PLL) and delay-locked loop (DLL) are also covered. Prerequisite: EECT 6326. (3-0) T
EECT 7327 Data Converters (3 semester hours) Data converter circuits in modern mixed-signal VLSI systems. Topics include sampling, switched-capacitor amplifiers and integrators, sample-and-hold circuits, voltage comparators, Nyquist-rate and oversampling converters. Prerequisite: EECT 6325 and EECT 6326. (3-0) T
EECT 7331 Physics of Noise (3 semester hours) The physics of fluctuation phenomena, generically called Noise. The class will cover the fundamental physical principles underlying generation-recombination, thermal, shot, 1/f noise and other, related fluctuation phenomena. The statistical nature of these physical processes will be developed. The physics of noise in resistors, diodes, bipolar, JFETS, and MOSFETs will be discussed and how to model it in circuits. Approximately two thirds of the class will be devoted to the physics of noise and the rest will cover how to use this knowledge to design low-noise integrated circuits. Prerequisite: EECT 6326. (3-0) R
EECT 7v88 Special Topics in Circuits and Systems (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
Electrical Engineering: Digital Systems
EEDG 5325 (CE 5325) Hardware Modeling Using HDL (3 semester hours) This course introduces students to hardware description languages (HDL) beginning with simple examples and describing tools and methodologies. It covers the language, dwelling on fundamental simulation concepts. Students are also exposed to the subset of HDL that may be used for synthesis of custom logic. HDL simulation and synthesis labs and projects are performed using commercial and/or academic VLSI CAD tools. Prerequisite: EE 3320 or equivalent. (3-0) T
EEDG 6301 (CE 6301) Advanced Digital Logic (3 semester hours) Modern design techniques for digital logic. Logic synthesis and design methodology. Link between front-end and back-end design flows. Field programmable gate arrays and reconfigurable digital systems. Introduction to testing, simulation, fault diagnosis and design for testability. Prerequisites: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) T
EEDG 6302 (CE 6302) Microprocessor Systems (3 semester hours) Design of microprocessor based systems including I/O and interface devices. Microprocessor architectures. Use of emulators and other sophisticated test equipment. Extensive laboratory work. Prerequisite: EE 4304 or equivalent and background in VHDL/Verilog. (2-3) Y
EEDG 6303 (CE 6303) Testing and Testable Design (3 semester hours) Techniques for detection of failures in digital circuits and systems. Fault modeling and detection. Functional testing and algorithms for automatic test pattern generation (ATPG). Design of easily testable digital systems. Techniques for introducing built-in self test (BIST) capability. Test of various digital modules, such as PLA's, memory circuits, datapath, etc. Prerequisite: EE 3320 or equivalent and background in VHDL/Verilog. (3-0) Y
EEDG 6304 (CE 6304, CS 6304) Computer Architecture (3 semester hours) Trends in processor, memory, I/O and system design. Techniques for quantitative analysis and evaluation of computer systems to understand and compare alternative design choices in system design. Components in high performance processors and computers: pipelining, instruction level parallelism, memory hierarchies, and input/output. Students will undertake a major computing system analysis and design project. Prerequisite: EE 4304 or CS 3340 and C/C++. (3-0) Y
EEDG 6305 (CE 6305) Computer Arithmetic (3 semester hours) Carry look ahead systems and carry save adders. Multipliers, multi-bit recoding schemes, array multipliers, redundant binary schemes, residue numbers, slash numbers. High-speed division and square root circuits. Multi-precision algorithms. The IEEE floating point standard, rounding processes, guard bits, error accumulation in arithmetic processes. Cordic algorithms. Prerequisites: EE 3320 and C/C++. (3-0) Y
EEDG 6306 (CE 6306) Application Specific Integrated Circuit Design (3 semester hours) This course discusses the design of application specific integrated circuits (ASIC). Specific topics include: VLSI system design specification, ASIC circuit structures, synthesis, and implementation of an ASIC digital signal processing (DSP) chip. Prerequisite: EE 3320 (3-0) Y
EEDG 6307 (CE 6307) Fault-Tolerant Digital Systems (3 semester hours) Concepts in hardware and software fault tolerance. Topics include fault models, coding in computer systems, fault diagnosis and fault-tolerant routing, clock synchronization, system reconfiguration, etc. Survey of practical fault-tolerant systems. Prerequisite: EEDG 6301, ENGR 3341 or equivalent. (3-0) R
EEDG 6308 (CE 6308, CS 6396) Real-Time Systems (3 semester hours) Introduction to real-time applications and concepts. Real-time operating systems and resource management. Specification and design methods for real-time systems. System performance analysis and optimization techniques. Project to specify, analyze, design, implement and test small real-time system. Prerequisite: CS 5348. (3-0) R
EEDG 6345 (CE 6345) Engineering of Packet-Switched Networks (3 semester hours) Detailed coverage, from the point of view of engineering design, of the physical, data-link, network and transport layers of IP (Internet Protocol) networks. This course is a masters-level introduction to packet networks. Prior knowledge of digital communication systems is strongly recommended. Prerequisite: EE 3350 or equivalent. (3-0) Y
EEDG 6370 (CE 6370) Design and Analysis of Reconfigurable Systems (3 semester hours) Introduction to reconfigurable computing, programmable logic: FPGAS, CPLDs, CAD issues with FPGA based design, reconfigurable systems: emulation, custom computing, and embedded application based computing, static and dynamic hardware, evolutionary design, software environments for reconfigurable systems. Prerequisite: EE 3320 or equivalent. (3-0) R
EEDG 6375 (CE 6375) Design Automation of VLSI Systems (3 semester hours) This course deals with various topics related to the development of CAD tools for VLSI systems design. Algorithms, data structures, heuristics and design methodologies behind CAD tools. Design and analysis of algorithms for layout, circuit partitioning, placement, routing, chip floor planning, and design rule checking (DRC). Introduction to CAD algorithms for RTL and behavior level synthesis, module generators, and silicon compilation. Prerequisite: CS 5343. Co-requisite: EECT 6325. (3-0) Y
EEDG 6398 (CE 6398, CS 6398) DSP Architectures (3 semester hours) Typical DSP algorithms, representation of DSP algorithms, data-graph, FIR filters, convolutions, Fast Fourier Transform, Discrete Cosine Transform, low power design, VLSI implementation of DSP algorithms, implementation of DSP algorithms on DSP processors, DSP applications including wireless communication and multimedia. Prerequisite: CS 5343. (3-0) Y
EEDG 7304 (CE 7304) Advanced Computer Architecture (3 semester hours) Advanced research topics in multi-processor, network and reconfigurable architectures. Focuses on current research in the area of computer system architecture to prepare students for a career in computer architecture research. Course will use articles from current technical literature to discuss relevant topics, such as digital signal processors and VLIW processors. Prerequisites: EEDG 6304, CS 5348, ENGR 3341 and knowledge of C/C++. (3-0) R
EEDG 7328 (CE 7328) Physical Design of High-Speed VLSI Circuits (3 semester hours) Techniques for the physical design of high-speed VLSI circuits. Topics related to interconnection circuit modeling, performance-driven routing, buffer and wire sizing, placement and floor planning, technology mapping and performance evaluation issues encountered in high-speed VLSI circuit designs. Discussion of state-of-the-art practical industrial design examples. A project related to the development of a prototype CAD tool. Prerequisites: CE/EECT 6325 and knowledge of programming in C. (3-0) T
EEDG 7v81 Special Topics in Digital Systems (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
Electrical Engineering - Graduate
EEGR 5300 Advanced Engineering Mathematics (3 semester hours) Advanced mathematical topics needed in the study of engineering. Topics may include advanced differential equations, linear algebra, vector calculus, complex analysis, and numerical methods. Credit does not apply to the 33 hour M.S.E.E. requirement. (3-0) R
EEGR 5301 (CS 5301) Professional and Technical Communication (3 semester hours) EEGR 5301 utilizes an integrated approach to writing and speaking for the technical professions. The advanced writing components of the course focus on writing professional quality technical documents such as proposals, memos, abstracts, reports, letters, emails, etc. The advanced oral communication components of the course focus on planning, developing, and delivering dynamic, informative and persuasive presentations. Advanced skills in effective teamwork, leadership, listening, multimedia and computer generated visual aids are also emphasized. Graduate students will have a successful communication experience working in a functional team environment using a real time, online learning environment. (3-0) Y
EEGR 5365 Engineering Leadership (3 semester hours) Interpersonal influence and organizational influence in leading engineering organizations. Leadership is addressed from the point of view of the technical manager as well as from that of the technical professional. Topics include staffing, motivation, performance evaluation, communication, project selection and planning, intellectual property and professional ethics. (3-0) R
EEGR 5381 Curriculum Practical Training in Electrical Engineering (3 semester hours) This course is required of students who need additional training in engineering practice. Credit does not apply to the 33 hour M.S.E.E. requirement. Consent of Graduate Adviser required. (May be repeated to a maximum of 9 hours) (3-0) R
EEGR 5v80 Special Topics in Electrical Engineering (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) S
EEGR 6316 Fields and Waves (3 semester hours) Study of electromagnetic wave propagation beginning with Maxwell's equations; reflection and refraction at plane boundaries; guided wave propagation; radiation from dipole antennas and arrays; reciprocity theory; basics of transmission line theory and waveguides. Prerequisite: EE 4301 or equivalent. (3-0) Y
EEGR 6381 (MECH 6391) Computational Methods in Engineering (3 semester hours) Numerical techniques and their applications in engineering. Topics will include: numerical methods of linear algebra, interpolation, solution of nonlinear equations, numerical integration, Monte Carlo methods, numerical solution of ordinary and partial differential equations, and numerical solution of integral equations. Prerequisites: ENGR 2300 and ENGR 3300 or equivalents, and knowledge of a scientific programming language. (3-0) R
EEGR 6v88 Special Topics in Electrical Engineering (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
EEGR 6v98 Thesis (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
EEGR 8v40 Individual Instruction in Electrical Engineering (1-6 semester hours) (May be repeated for credit.) For pass/fail credit only. ([1-6]-0) R
EEGR 8v70 Research in Electrical Engineering (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) R
EEGR 8v99 Dissertation (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
Electrical Engineering: Solid State Devices & Micro Sys Fabric
EEMF 5283 Plasma Technology Laboratory (2 semester hours) Laboratory will provide a hands-on experience to accompany EEMF 5383. Topics to include: Vacuum technology [pumps, gauges, gas feed], plasma uses [etch, deposition, lighting and plasma thrusters] and introductory diagnostics. Corequisite: EEMF 5383. Recommended Corequisite: EEMF 7171. (0-2) R
EEMF 5320 Introduction to Devices and Circuits (3 semester hours) This course provides a background in Electrical Engineering for students entering the M.S.E.E. program from other fields of science and engineering. Topics include circuit analysis and simulation, semiconductor device fundamentals and operation, and basic transistor circuits. Credit does not apply to the 33 hour M.S.E.E. requirement. Prerequisite: differential equations. (3-0) R
EEMF 5383 (MECH 5383, MSEN 5383, PHYS 5383) Plasma Technology (3 semester hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T
EEMF 6283 Plasma Science Laboratory (2 semester hours) Laboratory will provide a hands on experience to accompany EEMF 6383. Experiments will include measurements of fundamental plasma properties and understanding of important plasma diagnostics. Corequisite: EEMF 6383, recommended corequisite: EEMF 7171. (0-2) T
EEMF 6319 Quantum Physical Electronics (3 semester hours) Quantum-mechanical foundation for study of nanometer-scale electronic devices. Principles of quantum physics, stationary-state eigenfunctions and eigenvalues for one-dimensional potentials, interaction with the electromagnetic field, electronic conduction in solids, applications of quantum structures. Prerequisite: ENGR 3300 or equivalent. (3-0) Y
EEMF 6320 (MSEN 6320) Fundamentals of Semiconductor Devices (3 semester hours) Semiconductor material properties, band structure, equilibrium carrier distributions, non-equilibrium current-transport processes, and recombination-generation processes. Prerequisite: EEMF 6319 or equivalent. (3-0) Y
EEMF 6321 (MSEN 6321) Active Semiconductor Devices (3 semester hours) The physics of operation of active devices will be examined, including p-n junctions, bipolar junction transistors and field-effect transistors: MOSFETs, JFETS, and MESFETS. Active two-terminal devices and optoelectronic devices will be presented. Recommended co-requisite: EEMF 6320. (3-0) Y
EEMF 6322 (MECH 6348, MSEN 6322) Semiconductor Processing Technology (3 semester hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T
EEMF 6323 Circuit Modeling of Solid-State Devices (3 semester hours) Provide physical insight into the operation of MOSFETs and BJTs, with particular emphasis on new physical effects in advanced devices. Compact (SPICE-level) transistor models will be derived from basic semiconductor physics; common simplifications made in the derivations of model equations will be detailed to provide an appreciation for the limits of model capabilities. Prerequisites: EEMF 6320 and EEMF 6321. (3-0) R
EEMF 6324 (MSEN 6324) Electronic, Optical and Magnetic Materials (3 semester hours) Foundations of materials properties for electronic, optical and magnetic applications. Electrical and thermal conduction, elementary quantum physics, modern theory of solids, semiconductors and devices, dielectrics, magnetic and optical materials properties. Prerequisite: MSEN 5300 or equivalent. (3-0) T
EEMF 6348 (MECH 6341, MSEN 6348) Lithography and Nanofabrication (3 semester hours) Study of the principles, practical considerations, and instrumentation of major lithography technologies for nanofabrication of devices and materials. Advanced photolithography, electron beam lithography, nanoimprint lithography, x-ray lithography, ion beam lithography, soft lithography, and scanning probe lithography, basic resist and polymer science, applications in nanoelectronic and biomaterials. (3-0) Y
EEMF 6372 Semiconductor Process Integration (3 semester hours) The integration of semiconductor processing technology to yield integrated circuits. The course will emphasize MOSFET design based upon process integration, in particular as it applies to short channel devices of current interest. Process simulation will be used to study diffusion, oxidation, and ion implantation. (3-0) R
EEMF 6382 (MECH 6347, MSEN 6382) Introduction to MEMS (3 semester hours) Study of micro-electro-mechanical devices and systems and their applications. Microfabrication techniques and other emerging fabrication processes for MEMS are studied along with their process physics. Principles of operations of various MEMS devices such as mechanical, optical, thermal, magnetic, chemical/biological sensors/actuators are studied. Topics include: bulk/surface micromachining, LIGA, microsensors and microactuators in multiphysics domain. (3-0) T
EEMF 6383 (MECH 6383, PHYS 6383) Plasma Science (3 semester hours) Theoretically oriented study of plasmas. Topics to include: fundamental properties of plasmas, fundamental equations (kinetic and fluid theory, electromagnetic waves, plasma waves, plasma sheaths), plasma chemistry and plasma diagnostics. Prerequisite: EEGR 6316 or equivalent. (3-0) T
EEMF 7171 Current Topics in Plasma Processing (1 semester hour) Discussion of current literature on plasma processing; applications, diagnostics, sources, chemistry and technology. Knowledge of plasma processing technology (EEMF 6383 preferred). Prerequisite: Consent of instructor. May be repeated for credit. (1-0) Y
EEMF 7320 (MSEN 7320) Advanced Semiconductor Device Theory (3 semester hours) Quantum mechanical description of fundamental semiconductor devices; carrier transport on the submicron scale; heterostructure devices; quantum-effect devices. Prerequisites: EEMF 6320 and EEMF 6321. (3-0) R
EEMF 7v82 Special Topics in Microelectronics (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
Electrical Engineering: Optical Devices, Materials & Systems
EEOP 6309 Fourier Optics (3 semester hours) Theory of coherent optics using a linear systems approach. Application of the concepts of impulse response and transfer function to free-space wave propagation, diffraction, and image formation. Prerequisites: EE 3302 and EE 4301 or equivalents. (3-0) T
EEOP 6310 Optical Communication Systems (3 semester hours) Operating principles of optical communications systems and fiber optic communication technology. Characteristics of optical fibers, laser diodes, and laser modulation, laser and fiber amplifiers, detection, demodulation, dispersion compensation, and network topologies. System topology, star network, bus networks, layered architectures, all-optical networks. Prerequisite: EE 3350 or equivalent. (3-0) T
EEOP 6312 Laser and Modern Optics (3 semester hours) Theory and applications of lasers, including ray and beam optics. Design issues include power maximization, noise properties, spectral purity and high-speed modulation. Particular emphasis on semiconductor lasers and their relevance to optical communications. Prerequisite: EE 4301 or equivalent. (3-0) Y
EEOP 6313 (MSEN 6313) Semiconductor Opto-Electronic Devices (3 semester hours) Physical principles of semiconductor optoelectronic devices: optical properties of semiconductors, optical gain and absorption, wave guiding, laser oscillation in semiconductors, LEDs, physics of detectors, applications. Prerequisite: EE 3310 or equivalent. (3-0) R
EEOP 6314 Principles of Fiber and Integrated Optics (3 semester hours) Theory of dielectric waveguides, modes of planar waveguides, strip waveguides, optical fibers, coupled-mode formalism, directional couplers, diffractive elements, switches, wavelength-tunable filters, polarization properties of devices and fibers, step and graded-index fibers, devices for fiber measurements, fiber splices, polarization properties, and fiber systems. Prerequisites: ENGR 3300 and EE 4301 or equivalents. (3-0) T
EEOP 6315 Engineering Optics (3 semester hours) Fundamental concepts of geometrical optics, first-order optical system design and analysis, paraxial ray tracing, aperture and field stops. Optical materials and properties; third order aberration theory. Prerequisite: PHYS 2326 or equivalent. (3-0) T
EEOP 6317 Physical Optics (3 semester hours) Study of optical propagation, interference, diffraction and polarization based primarily on the electromagnetic nature of light; interferometers; diffractive phenomena based on scalar formalisms; diffraction gratings; diffraction in optical instruments; interference of polarized waves; mathematical description of fully and partially polarized light; Jones and Mueller matrices. Prerequisite: EE 4301 or equivalent. (3-0) T
EEOP 6328 Nonlinear Optics (3 semester hours) Survey of nonlinear optical effects; origins of optical nonlinearities; laser-pulse propagation equations in bulk media and optical fibers; the nonlinear optical susceptibility tensor; second-order nonlinear optical effects (second harmonic generation, optical rectification, parametric mixing and amplification); third-order nonlinear optical effects in fiber optic communication systems (self-phase modulation, cross-phase modulation, stimulated Brillouin scattering, stimulated Raman scattering, four-wave mixing, nonlinear polarization mode dispersion); self-focusing and self-defocusing in bulk media; computational methods for nonlinear optics. Prerequisite: EE 4301 or equivalent; EEOP 6310 recommended. (3-0) R
EEOP 6329 Optical Signal Conditioning (3 semester hours) Engineering principles and applications of laser beam modulation and deflection (acousto-optics and electro-optics), harmonic generation and optical parametric processes, optical pulse compression and shaping. Prerequisites: EE 4301 or equivalent and EEOP 6317 recommended. (3-0) R
EEOP 6334 Advanced Geometrical and Physical Optics (3 semester hours) Geometrical optics as a limiting case of the propagation of electromagnetic waves; geometrical theory of optical aberrations; the diffraction theory of aberrations; image formation with partially coherent and partially polarized light; computational methods for physical optics. Other topics may be selected from the following: diffraction theory of vector electromagnetic fields, diffraction of light by ultrasonic waves, optics of metals, Lorenz-Mie theory of the scattering of light by small particles, and optics of crystals. Prerequisite: EEOP 6317. (3-0) R
EEOP 6335 Engineering of Infrared Imaging Systems (3 semester hours) Thermal optics, review of Fourier optics, review of information theory, embedded system design principles, and system modeling. Prerequisites: EEOP 6309 or EEOP 6315 or equivalents. (3-0) T
EEOP 6338 High-Speed Optical Receivers and Transmitters (3 semester hours) Review of optical communication systems. Definitions of attenuation and dispersion. Architecture of optical transmitters and receivers. Principles of operation of photodetectors (PIN and APD). Application of digital communication theory to the analysis of optical receivers. Definition of sensitivity and dynamic range in optical receivers. Definition of sensitivity and dynamic range in optical receivers. Study of high-speed transimpedance and limiting amplifiers. Principles of operation of lasers (DFB and Fabry-Perot). Study of tunable lasers and high-speed external modulators. Direct and externally modulated transmitters. Study of high-speed drivers for laser and modulators. Characteristics of optical transmitters. Prerequisite: EE 3311 or equivalent. (3-0) R
EEOP 7340 Optical Network Architectures and Protocols (3 semester hours) Introduction to optical networks. The ITU Optical Layer. First-generation optical networks. Standards, e.g. SONET/SDH, FDDI. Second-generation optical networks. Broadcast and select networks. The lightpath concept. Wavelength routing networks. Virtual topology design. Photonic packet switching. Advanced solutions and test beds. Prerequisite: EESC 6340. (3-0) R
EEOP 7v83 Special Topics in Optics and Fields (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
Electrical Engineering: Power Electronics and Energy Systems
EEPE 6354 Power Electronics (3 semester hours) Introduction to power electronics and its applications. DC-DC converters: Buck Converter, Boost Converter, Buck-Boost converter, Flyback converters, Forward converter, Full bridge and Half bridge converters. DC- AC Inverters: Single phase and three phase bridge inverters, Pulse-width modulation strategies- sinusoidal and space vector modulation. Resonant converters. AC-DC Phase Controlled Thyristor Converters. Closed loop control of DC Motor Drives. Introduction to AC motor drives and systems. Examples: Industrial, Transportation, Renewable Energy Applications. (3-0) Y
EEPE 6356 Adjustable Speed Motor Drives (3 semester hours) Steady state and dynamic performance of electric machines - induction, synchronous, reluctance, and PM machines. Two axis models of AC machines and AC drives. Control characteristics of electric machines and control methodologies. Direct torque and flux control and current regulated controllers. Field orientation control techniques - stator flux, rotor flux, and air gap flux orientation. Introduction to fault tolerant and sensorless control of machines. (3-0) Y
EEPE 6357 Control, Modeling & Simulation in Power Electronics (3 semester hours) Principles of modeling and fundamentals of controller design for inverters, and switching dc-dc power converters will be discussed with an emphasis on generalized averaging methods. Special attention will be given to analysis and design of regulated power supplies for low power and medium power level supplies. An introduction to nonlinear phenomenon in power electronic systems and adjustable speed motor drives will be included. Finally analysis and design of multi-converter systems will be discussed and the use of advanced control methods such as Feedback linearization and sliding mode control in such systems will be explored. (3-0) Y
EEPE 6358 Electrification of Transportation (3 semester hours) Introduction to electric and hybrid vehicles. Hybrid vehicle architectures - series, parallel and plug-in hybrid vehicle architectures - range extender and full hybrid systems. Propulsion system analysis, powertrain component sizing, and vehicle simulation. Energy requirements, energy storage devices, and fuel cell vehicles. Power electronic converters for electric and hybrid vehicles. Energy management and control strategies. Characteristics of commercially available hybrid vehicles. Introduction to more electric aircraft and architectures. Marine electric propulsion system. (3-0) T
EEPE 6359 Renewable Energy Systems and Distributed Power Generation Systems (3 semester hours) Fundamentals of Energy sustainability and renewable energy. Interconnection of energy and environment. Renewable energy sources and availability. Basics of energy conversion - review of Laws of Thermodynamics, electrochemical energy conversion (fuel cells), thermionic and thermo-photovoltaic energy conversion, electromechanical energy conversion. Basics of hydro, wind, solar, geothermal, and tidal systems. Power Converters and drives for energy conversion. Solar and wind energy technologies and system design. Fuel cells and fuel cell systems for power generation. Hybrid power generation systems and distributed power generation, and grid integration. Energy technology roadmap. (3-0) T
EEPE 7354 Advanced Power Converters (3 semester hours) Pulse width modulation of converters and inverters. Space vector PWM strategies. Soft switching converters. High frequency resonant converters. Power factor correction rectifiers and distributed power systems. Active rectifiers. Multi-level converters. Matrix converters. Multiple input converters. (3-0) T
EEPE 7356 Computer Aided Design of Electric Machines (3 semester hours) Principles of force generation and distribution of electromagnetic forces within induction, permanent magnet synchronous, and reluctance machines. Introduction to finite element analysis of electric machinery. Electromagnetic, structural, and thermal fields in electric machines. Multi-physics analysis of electric machines. Optimization methodologies in multi-objective problems. Applications of artificial intelligence methods for optimal design of electric machinery. (3-0) T
EEPE 7v91 Special Topics in Power Electronics (1-6 semester hours) Advanced power electronics and drives related topics relevant to the needs for research in power/energy systems. Topics may vary. May be repeated for credit. ([1-6]-0) R
Electrical Engineering: RF & Microwave Engineering
EERF 5305 Radio Frequency Engineering (3 semester hours) Introduction to generation, transmission, and radiation of electromagnetic waves. Microwave-frequency measurement techniques. Characteristics of guided-wave structures and impedance matching. Fundamentals of antennas and propagation. Prerequisite: EE 4301 or equivalent. (3-0) Y
EERF 6311 RF and Microwave Circuits (3 semester hours) Analysis and design of RF and microwave circuits. Topics include impedance matching, network theory, S-parameters, transmission line media (waveguide, coax, microstrip, stripline, coplanar waveguide, etc.) and passive component design (power dividers, couplers, switches, attenuators, phase shifters, etc.). Industry-standard microwave CAD tools will be used. Prerequisite: EE 4368 or equivalent. (3-0) R
EERF 6330 RF Integrated Circuit Design (3 semester hours) Introduction to RF and wireless systems; basic concepts of RF design: linearity, distortion, (P1dB, IIP3), sensitivity, noise figure; RF passives: Q-factors, impedance transformation, matching network; transceiver architectures: Receivers-Heterodyne, direct down-conversion, image reject receivers, direct conversion transmitter, two-step transmitter; low noise amplifier design; mixer design; oscillator design; basic architectures of power amplifiers. Use of Agilent ADS for design projects. Prerequisite: EE 4340. (3-0) Y
EERF 6351 Computational Electromagnetics (3 semester hours) Review of Maxwell's equations; numerical propagation of scalar waves; finite-difference time-domain solutions of Maxwell's equations; numerical implementations of boundary conditions; numerical stability; numerical dispersion; absorbing boundary conditions for free space and waveguides; selected applications in telecommunications, antennas, microelectronics and digital systems. Prerequisite: EE 4301 or equivalent. (3-0) R
EERF 6355 RF and Microwave Amplifier Design (3 semester hours) Design of high-frequency active circuits. Review of transmission line theory. RF and microwave matching circuits using discrete and guided wave structures. Detailed study of S-parameters. Design of narrow band, broadband and low noise amplifiers. Detailed study of noise figure, noise parameters and stability of RF and microwave circuits using S-parameters. Prerequisite: EE 4368 or equivalent. (3-0) R
EERF 6392 Millimeter Wave Integrated Circuit Design (3 semester hours) Millimeter wave applications, silicon integrated circuits technology trends, passive components in silicon IC's for millimeter wave operation, Drude model for silicon substrate, parasitic modeling, NQS transistor model, High frequency limit for thermal noise, chip interface including packaging and antenna, comparison between RF and mm-wave circuits, techniques for extending circuit operation frequency (injection locking and frequency multiplication), and diode circuits including a parametric amplifier. Prerequisite: EECT 6325 and EERF 6311 or equivalent. (3-0) T
EERF 6394 Antenna Engineering and Wave Propagation (3 semester hours) Operating principles for microwave antennas used in modern wireless communications and radar systems. Prerequisite: EEGR 6316 or equivalent. (3-0) T
EERF 6395 RF and Microwave Systems Engineering (3 semester hours) Review of RF and microwave systems, such as cellular, point-to-point radio, satellite, RFID and RADAR. Topics include: system architectures, noise & distortion, antennas & propagation, transmission lines & network analysis, active & passive components, modulation techniques and specification flowdown. Prerequisite: EE 4368 or equivalent. (3-0) R
EERF 6396 Microwave Design and Measurement (3 semester hours) This lecture and lab course covers the fundamentals of microwave component design and measurements, including vector impedance (scattering parameters), scalar measurements and spectrum analysis. Microwave components, such as filters, directional couplers, switches, amplifiers, and oscillators, will be designed and simulated with various CAD tools and then built and measured to compare performance with theory. Prerequisite: EE 4368 or equivalent. (2-1) R
EERF 7330 Advanced RF Integrated Circuit Design (3 semester hours) Power Amplifiers, different classes of linear (A, B, AB, C) and switching power amplifiers (E, G, H), CMOS Integrated power amplifiers, High Efficiency Power Amplifiers (Doherty Power Amplifier); Phase Locked Loops: Basic concepts of PLL, Charge pumps, Type-I and Type-II PLLs, Noise in PLLs, Phase Noise, Frequency multiplication, RF Synthesizer Architectures, Frequency Dividers, Fractional-N PLLs, Delta-Sigma based PLLs, ADPLL; Advanced RF transceivers; Wideband and multiband radio design; Complete link budget analysis for wireless systems. Design project will focus on design of the entire transmitter using Agilent ADS. Prerequisite: EERF 6330 (RF Integrated Circuit Design). (3-0) Y
EERF 7v89 Special Topics in RF and Microwave Systems (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
Electrical Engineering: Signal Processing & Communications
EESC 5350 Signals, Systems, and Digital Communications (3 semester hours) Advanced methods of analysis of electrical networks and linear systems. Laplace transforms, Fourier series, and Fourier transforms. Response of linear systems to step, impulse, and sinusoidal inputs. Convolution, system functions, and frequency response. Z transforms and digital systems. Fundamentals of digital communication systems such as information, digital transmission, channel capacity, modulation and demodulation techniques are introduced. Signaling schemes and performance of binary as well as M-ary modulated digital communication systems are introduced. Overall design considerations and performance evaluation of various digital communication systems are discussed. Prerequisite: ENGR 3300 or equivalent. (3-0) R
EESC 5360 Introduction to Communications and Signal Processing (3 semester hours) This course is designed to provide the necessary background for someone with a technical degree to enter the M.S.E.E. program in the Communications and Signal Processing concentration. It will focus on linear systems theory, to include Fourier series, Fourier and Laplace transforms, transfer functions, frequency response, and convolution. It will also include introductions to the solution of ordinary differential equations and to communications systems. Credit does not apply to the 33 hour M.S.E.E. requirement. Prerequisites: One year of calculus and one semester of probability theory. (3-0) R
EESC 6340 Introduction to Telecommunications Networks (3 semester hours) Circuit, message and packet switching. The hierarchy of the ISO-OSI Layers. The physical layer: channel characteristics, coding, and error detection. The data link control layer: retransmission strategies, framing, multiaccess protocols, e.g., Aloha, slotted Aloha, CSMA, and CSMA/CD. The network layer: routing, broadcasting, multicasting, flow control schemes. Co-requisite: EESC 6349. (3-0) Y
EESC 6341 Information Theory I (3 semester hours) Self information, mutual information, discrete memoryless sources, entropy, source coding for discrete memoryless channels, homogeneous Markov sources, discrete memoryless channels, channel capacity, converse to the coding theorem, noisy channel coding theorem, random coding exponent, Shannon limit. Prerequisite: ENGR 3341. (3-0) R
EESC 6343 Detection and Estimation Theory (3 semester hours) Parameter estimation. Least-square, mean-square, and minimum-variance estimators. Maximum A Posteriori (MAP) and Maximum-Likelihood (ML) estimators. Bayes estimation. Cramer-Rao lower bound. BLUE estimator and Wiener filtering. Prerequisite: EESC 6349. (3-0) R
EESC 6344 Coding Theory (3 semester hours) Groups, fields, construction and properties of Galois fields, error detection and correction, Hamming distance, linear block codes, syndrome decoding of linear block codes, cyclic codes, BCH codes, error trapping decoding and majority logic decoding of cyclic codes, non-binary codes, Reed Solomon codes, burst error correcting codes, convolutional codes, Viterbi decoding of convolutional codes. Prerequisite: EESC 6352. (3-0) R
EESC 6349 (MECH 6312) Random Processes (3 semester hours) Random processes concept. Stationarity and independence. Auto-correlation and cross-correlation functions, spectral characteristics. Linear systems with random inputs. Special topics and applications. Prerequisite: EE 3302 or MECH 6300 and ENGR 3341 or equivalent background in probability and statistics. (3-0) Y
EESC 6350 Signal Theory (3 semester hours) Signal processing applications and signal spaces, vector spaces, matrix inverses and orthogonal projections, four fundamental subspaces, least squares and minimum norm solutions, the SVD and principal component analysis, subspace approximation, infinite dimensional spaces, linear operators, norms, inner products and Hilbert spaces, projection theorems, spectral properties of Hermitian operators, Hilbert spaces of random variables, linear minimum variance estimation and the Levinson-Durbin algorithm, general optimization over Hilbert spaces, methods and applications of optimization. Prerequisite: EE 3302 or equivalent. (3-0) Y
EESC 6352 Digital Communication Systems (3 semester hours) This course covers basic principles of digital communications. The topics include introduction to source coding, signal representations, various digital modulation and transmission schemes, demodulators and detectors, error performance evaluations, introduction to channel coding, link budget, channel capacity and system design considerations. Overviews of various communication systems and their applications are also presented. Prerequisite: EESC 6349 or equivalent. (3-0) Y
EESC 6353 Broadband Digital Communication (3 semester hours) Characterization of broadband wireline and wireless channels. MAP and ML detection. Intersymbol Interference (ISI) effects. Equalization methods to mitigate ISI including single-carrier and multi-carrier techniques. Equalization techniques and structures including linear, decision-feedback, precoding, zero-forcing, mean square-error, FIR versus IIR. Multi-Input Multi-Output (MIMO) Equalization. Implementation issues including complexity, channel estimation, error propagation, etc. Real-world case studies from Digital Subscriber Lines (DSL) and wireless systems. Students work individually or in small teams on project and present their findings to class. Prerequisites: EE 4360 and knowledge of MATLAB. (3-0) T
EESC 6360 Digital Signal Processing I (3 semester hours) Analysis of discrete time signals and systems, Z-transform, discrete Fourier transform, fast Fourier transform, analysis and design of digital filters. Prerequisite: ENGR 3302 or EE 4361 or equivalent. (3-0) Y
EESC 6361 Digital Signal Processing II (3 semester hours) Continuation of EESC 6360. Includes advanced topics in signal processing such as: Digital filter structures, digital filter design and implementation methods, multirate digital signal processing, linear prediction and optimum filtering, spectral analysis and estimation methods. Prerequisite: EESC 6360. (3-0) T
EESC 6362 Introduction to Speech Processing (3 semester hours) Introduction to the fundamentals of speech signal processing and speech applications. Speech analysis and speech synthesis techniques, speech enhancement and speech coding techniques including ADPCM and linear-predictive based methods such as CELP. Prerequisite: EESC 6360. (3-0) Y
EESC 6363 Digital Image Processing (3 semester hours) Image formation, image sampling, 2D Fourier transform and properties, image wavelet transform, image enhancement in spatial and frequency domains, image restoration, color image processing, image segmentation, edge detection, morphological operations, object representation and description, introduction to image compression. Prerequisites: EE 4361 or equivalent and knowledge of C or MATLAB. (3-0) T
EESC 6364 Pattern Recognition (3 semester hours) Pattern recognition system, Bayes decision theory, maximum likelihood and Bayesian parametric classifiers, linear discriminant functions and decision boundaries, density estimation and nonparametric classifiers, unsupervised classification and clustering, multilayer neural networks, decision trees, classifier comparison. Prerequisite: Knowledge of C or MATLAB. Co-requisite: EESC 6349. (3-0) T
EESC 6365 Adaptive Signal Processing (3 semester hours) Adaptive signal processing algorithms learn the properties of their environments. Transversal and lattice versions of the Least Mean Squares (LMS) and Recursive Least Squares (RLS) adaptive filter algorithms and other modern algorithms will be studied. These algorithms will be applied to network and acoustic echo cancellation, speech enhancement, channel equalization, interference rejection, beam forming, direction finding, active noise control, wireless systems, and others. Prerequisites: EESC 6349, EESC 6360 and knowledge of matrix algebra. (3-0) T
EESC 6366 Speech and Speaker Recognition (3 semester hours) Introduction to concepts in automatic recognition methods for speech applications; the primary emphasis is for automatic speech recognition and speaker identification techniques. Topics include speech features for recognition, hidden Markov models (HMMs) for acoustic and language applications (speech recognition, dialect/language recognition), Gaussian mixture models (GMMs) for speaker characterization, robustness issues to address noise and channel conditions for automatic recognition. (3-0) Y
EESC 6367 Applied Digital Signal Processing (3 semester hours) Implementation of signal processing algorithms, combination of textual and graphical programming of DSP systems, fixed-point versus floating-point, FPGA/DSP chip architecture, FPGA/DSP software development tools, code optimization, application project. Prerequisites: EE 4361 or equivalent and knowledge of C or MATLAB. (2-3) Y
EESC 6368 Multimodal Signal Processing (3 semester hours) Theory and applications in the field of multimodal signal processing. Robustness and performance of systems by considering cross-modal integration. Statistical algorithms and machine learning methods used for fusion/fission of multimodal content at feature, decision and model level. Common graphical models used in multimodal analysis including Dynamic Bayesian Network, Product HMM, Multistream HMM, coupled HMM, Factorial HMM, Input Output HMM and segmental models. Prerequisite: ENGR 3341 or equivalent. Recommended Co-requisite: EESC 6349. (3-0) T
EESC 6390 Introduction to Wireless Communication Systems (3 semester hours) Principles, practice, and system overview of mobile systems. Modulation, demodulation, coding, encoding, and multiple-access techniques. Performance characterization of mobile systems. Prerequisite: EE 3350 or equivalent. (3-0) Y
EESC 6391 Signaling and Coding for Wireless Communication Systems (3 semester hours) Study of signaling and coding for wireless communication systems. Topics which will be covered include digital modulation schemes, digital multiple access technologies, their performance under wireless channel impairments, equalization, channel coding, interleaving, and diversity schemes. Prerequisites: EESC 6352 and EESC 6390. (3-0) T
EESC 6392 Propagation and Devices for Wireless Communications (3 semester hours) Mobile communication fundamentals, models of wave propagation, simulation of electromagnetic waves in the cellular environment, multipath propagation, compensation for fading, mobile and cell antenna designs, problems of interference and incompatibility, design of active and passive cellular components, comparison of analog and digital cellular designs. Prerequisites: EE 4301 or equivalent; EESC 6390. (3-0) R
EESC 6393 Imaging Radar Systems Design and Analysis (3 semester hours) Radar systems, antenna systems, the radar equation, electromagnetic waves scattering from targets, radar signal and noise, detection and extraction of signal from noise or clutter, range and Doppler profiles, radar image formation, real aperture radar imaging, SAR imaging, ISAR imaging, image distortion, super resolution radar imaging techniques, and advanced holographic radar imaging techniques. Prerequisites: EE 3350 and EE 4301 or equivalents. (3-0) T
EESC 6395 Wireless Sensor Systems and Networks (3 semester hours) Sensor mote architecture and design. Sensor network types, architecture and protocol stack. Studies on and design of physical layer, data link layer, network layer, transport layer, and application layer. Time synchronization, localization, topology, mobility and task management issues in wireless sensor networks. Security and privacy issues. Case studies on applications. Prerequisite: ECS 4390 or equivalent. (3-0) T
EESC 7v84 Special Topics in Telecommunications (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
EESC 7v85 Special Topics in Signal Processing (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
EESC 7v86 Special Topics in Wireless Communications (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
Engineering
ENGR 5375 Introduction to Robotics (3 semester hours) Fundamentals of robotics, rigid motions, homogeneous transformations, forward and inverse kinematics, velocity kinematics, motion planning, trajectory generation, sensing, vision, and control. Prerequisites: (ENGR 2300 and EE 3302) and (EE 4310 or MECH 4310) or equivalent. (2-3) Y
ENGR 6331 (MECH 6300, SYSM 6307) Linear Systems (3 semester hours) State space methods of analysis and design for linear dynamical systems. Coordinate transformations and tools from advanced linear algebra. Controllability and observability. Lyapunov stability analysis. Pole assignment, stabilizability, detectability. State estimation for deterministic models, observers. Introduction to the optimal linear quadratic regulator problem. Prerequisites: ENGR 2300 and EE 4310 or MECH 4310 or equivalent. (3-0) Y
ENGR 6332 (MECH 6332) Advanced Control (3 semester hours) Modern control techniques in state space and frequency domain: optimal control, robust control, and stability. Prerequisite: ENGR 6331. (3-0) R
ENGR 6336 (BMEN 6388, MECH 6313, SYSE 6324) Nonlinear Control Systems (3 semester hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T
ENGR 7v90 Special Topics in Control Systems (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
Mechanical Engineering
MECH 5383 (EEMF 5383, MSEN 5383, PHYS 5383) Plasma Technology (3 semester hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T
MECH 6300 (ENGR 6331, SYSM 6307) Linear Systems (3 semester hours) State space methods of analysis and design for linear dynamical systems. Coordinate transformations and tools from advanced linear algebra. Controllability and observability. Lyapunov stability analysis. Pole assignment, stabilizability, detectability. State estimation for deterministic models, observers. Introduction to the optimal linear quadratic regulator problem. Prerequisites: ENGR 2300 and EE 4310 or MECH 4310 or equivalent. (3-0) Y
MECH 6303 Computer Aided Design (3 semester hours) This course provides an introduction to design principles and methodologies for geometrical modeling, curve and surface fitting in an automated environment, CAD/CAM simulation of manufacturing, and computer-aided solid modeling. Prerequisite: MECH 3305 or equivalent. (3-0) Y
MECH 6306 Continuum Mechanics (3 semester hours) This course provides an introduction to mechanics of continua within a rigorous mathematical framework. Topics of interest include tensor analysis, kinematics, analysis of deformation, analysis of stress, and constitutive equations. Other areas of discussion focus on material anisotropy, mechanical properties of fluids and solids, derivation of field equations, boundary conditions, and solutions of initial and boundary value problems for continua. Prerequisite: MECH 3301 or equivalent. (3-0) Y
MECH 6307 Thermal and Energy Principles (3 semester hours) This course provides an extended treatment of the fundamentals of thermodynamics as related to energy conversion, storage, transmission and use. Industrial topics may include: conventional and sustainable power generation or efficiency in refrigeration, air-conditioning and heating applications. Further applications may include: studies of internal combustion engines, heat pump systems, and other energy conversion machines. Prerequisites: MECH 3320, MECH 3315 or equivalents. (3-0) Y
MECH 6311 Advanced Mechanical Vibrations (3 semester hours) Fundamental phenomena of multi-degree discrete and continuous systems. Matrix methods of solutions of discrete systems. Determination of natural frequencies and mode shapes of discrete and continuous systems. Passive methods of vibration control. Applications of finite element methods to analysis of mechanical vibrations. Prerequisite: MECH 4340 or equivalent. (3-0) T
MECH 6312 (EESC 6349) Random Processes (3 semester hours) Random processes concept. Stationarity and independence. Auto-correlation and cross-correlation functions, spectral characteristics. Linear systems with random inputs. Special topics and applications. Prerequisite: EE 3302 or MECH 6300 and ENGR 3341 or equivalent background in probability and statistics. (3-0) Y
MECH 6313 (BMEN 6388, ENGR 6336, SYSE 6324) Nonlinear Control Systems (3 semester hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T
MECH 6314 (SYSM 6306, BMEN 6372) Engineering Systems: Modeling & Simulation (3 semester hours) This course will present principles of computational modeling and simulation of systems. General topics covered include: parametric and non-parametric modeling; system simulation; parameter estimation, linear regression and least squares; model structure and model validation through simulation; and, numerical issues in systems theory. Techniques covered include methods from numerical linear algebra, nonlinear programming and Monte Carlo simulation, with applications to general engineering systems. Modeling and simulation software is utilized (MATLAB/SIMULINK). (3-0) Y
MECH 6316 (SYSE 6322) Digital Control of Automotive Powertrain Systems (3 semester hours) Digital control systems, discretization and design by equivalents. Input-output design and discrete-time state variable estimation and control. Introduction to various control problems in automotive powertrains. Application of digital control principles to automotive powertrains for internal combustion engine idle speed control and air-to-fuel ratio control. Prerequisites: EE 4310 or MECH 4310 or equivalents (3-0) T
MECH 6323 (SYSE 6323) Robust Control Systems (3 semester hours) Theory, methodology, and software tools for the analysis and design of model-based control systems with multiple actuators and multiple sensors. Control oriented model parameterizations and modeling errors. Definitions and criteria for robust stability and performance. Optimal synthesis of linear controllers. The loop shaping design method. Methods to simplify the control law. Control law discretization. Mechatronic design examples. Prerequisite: (MECH 6300 or ENGR 6331 or SYSM 6307) or equivalent. (3-0) T
MECH 6324 Robot Control (3 semester hours) Dynamics of robots; methods of control; force control; robust and adaptive control; feedback linearization; Lyapunov design methods; passivity and network control; control of multiple and redundant robots; teleoperation. Prerequisite: MECH 6300. (3-0) T
MECH 6330 Multiscale Design & Optimization (3 semester hours) Multi-scale systems consist of components from two or more length scales (nano, micro, meso, or macro-scales). The challenge is to make these components so they are conceptually and model-wise compatible with other-scale components with which they interface. This course covers the fundamental properties of scales, design theories, modeling methods and manufacturing issues which must be addressed in these systems. Examples include precision instruments, nanomanipulators, fiber optics, micro/nano-photonics, nanorobotics, MEMS, carbon nano-tube assemblies. Prerequisite: MECH 6303 (3-0) T
MECH 6332 (ENGR 6332) Advanced Control (3 semester hours) Modern control techniques in state space and frequency domain: optimal control, robust control, and stability. Prerequisite: ENGR 6331. (3-0) R
MECH 6333 Materials Design & Manufacturing (3 semester hours) This course provides an in-depth analysis of design problems faced in the development and mass manufacture of advanced materials. This course will explore the interplay among mathematical modeling, CAD, mold creation and manufacturing processes for polymers, ceramics and metals. Tradeoffs among various thermomechanical properties, cost and aesthetics will be studied. Prerequisite: MECH 6303 (3-0) T
MECH 6334 Smart Materials and Structures (3 semester hours) Introduction to smart materials. Fundamental properties of smart materials including piezoelectric materials, shape memory alloys or polymers, conducting polymers, dielectric elastomers, and ionic polymer metal composites. Constitutive modeling of smart materials. Characterization techniques. Applications as sensors, actuators and in energy harvesting. Prerequisite: MECH 6306. (3-0) T
MECH 6335 (OPRE 6340) Flexible Manufacturing Strategies (3 semester hours) The use of automation in manufacturing is continuously increasing. This course covers the variety of types of flexible automation, including flexible manufacturing systems, integrated circuit fabrication and assembly, and robotics. Examples of international systems are discussed to show the wide variety of systems designs and problems. Strategic as well as economic justification issues are covered. (3-0) R
MECH 6341 (EEMF 6348, MSEN 6348) Lithography and Nanofabrication (3 semester hours) Study of the principles, practical considerations, and instrumentation of major lithography technologies for nanofabrication of devices and materials. Advanced photolithography, electron beam lithography, nanoimprint lithography, x-ray lithography, ion beam lithography, soft lithography, and scanning probe lithography, basic resist and polymer science, applications in nanoelectronic and biomaterials. (3-0) Y
MECH 6347 (EEMF 6382, MSEN 6382) Introduction to MEMS (3 semester hours) Study of micro-electro-mechanical devices and systems and their applications. Microfabrication techniques and other emerging fabrication processes for MEMS are studied along with their process physics. Principles of operations of various MEMS devices such as mechanical, optical, thermal, magnetic, chemical/biological sensors/actuators are studied. Topics include: bulk/surface micromachining, LIGA, microsensors and microactuators in multiphysics domain. (3-0) T
MECH 6348 (EEMF 6322, MSEN 6322) Semiconductor Processing Technology (3 semester hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T
MECH 6350 Advanced Solid Mechanics (3 semester hours) This course provides a foundation for studying mechanical behavior of materials analyzing deformation and failure problems common in engineering design and materials science . Topics to be covered include elasticity, elastic stability, wave propagation, plasticity, and fracture. This course explores static and dynamic stress analysis, two- and three-dimensional theory of stressed elastic solids, analyses of structural elements with applications in a variety of fields, variational theorems and approximate solutions. Prerequisite: MECH 6306 or equivalent. (3-0) T
MECH 6353 Computational Mechanics (3 semester hours) This course provides an introduction to nonlinear finite element methods (FEMs) for solving solid mechanics problems. Topics include total and updated Lagrangian formulations in FEMs, variational principles in continuum mechanics, FEM/meshfree shape functions and numerical discretization, adaptivity and error estimates, explicit and implicit time integration methods, stability and convergence analysis, space-time FEM formulation, Newton's method and constraints, line-search and arc-length methods, impact and contact, computational elasticity and inelasticity. Prerequisite: MECH 6306 or equivalent. (3-0) T
MECH 6354 Experimental Mechanics (3 semester hours) This course provides students with experimental techniques for measurements of deformations and analysis of stress in engineering materials subjected to mechanical and thermal loadings. Topics include physical mechanisms associated with design-limiting behavior of engineering materials such as stiffness, strength, toughness, and durability; basic mechanical properties of engineering materials and testing procedures used to quantify these properties; criteria for materials selection in mechanical design; and modern experimental techniques such as scanning probe microscopy, optical microscopy, nanoindenation, digital image correlation, and micro-tensile testing using MEMS devices. Prerequisite: MECH 3301 or equivalent. (3-0) T
MECH 6355 Viscoelasticity (3 semester hours) This course provides an overview of advanced stress analysis of solids with properties strongly influenced by time, temperature, pressure, and humidity. Topics covered include: the material characterization and thermodynamic foundation of the constitutive behavior of time-dependent materials such as polymers, and composites; time-temperature superposition principle for thermorheologically simple materials; correspondence principle; integral formulation for quasi-static boundary value problems; treatment of time-varying boundary conditions; linear viscoelastic stress waves, approximate methods of linear viscoelastic stress analysis; and introduction to nonlinear viscoelastic constitutive laws. Prerequisite: MECH 6306 or equivalent (3-0) T
MECH 6367 (MSEN 6310) Mechanical Properties of Materials (3 semester hours) Phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Prerequisite: MECH 3301 or MSEN 5300 or equivalent. (3-0) R
MECH 6368 Imperfections in Solids (3 semester hours) Point defects in semiconductors, metals, ceramics, and nonideal defect structures; nonequilibrium conditions produced by irradiation or quenching; effects of defects on electrical and physical properties, effects of defects at interfaces between differing materials. MECH 6306 or equivalent. (3-0) T
MECH 6370 Fluid Mechanics (3 semester hours) Fundamentals of fluid mechanics of Newtonian, incompressible flows in various regimes. Derivation of governing equations of motion, and introduction to viscous internal and external flows in laminar and turbulent regimes. Prerequisite: MECH 3315 or equivalent. (3-0) T
MECH 6371 Computational Fluid Dynamics (3 semester hours) This course presents computational methods for viscous flow, boundary layer theory and turbulence. Formulation of finite element methods and other traditional numerical techniques for analysis of dynamic problems in fluid mechanics will be examined. Prerequisite: MECH 6370 or equivalent. (3-0) T
MECH 6380 Advanced Heat Transfer (3 semester hours) This course provides an introduction to fundamentals of conductive, convective and radiative heat transfer with an emphasis on numerical and analytical solutions. Steady and transient one- and multi-dimensional thermal conduction are described. Other topics include emphasis on analytical methods, numerical techniques and approximate solutions. Prerequisites: MECH 4350, MECH 3315 or equivalents. (3-0) T
MECH 6383 (EEMF 6383, PHYS 6383) Plasma Science (3 semester hours) Theoretically oriented study of plasmas. Topics to include: fundamental properties of plasmas, fundamental equations (kinetic and fluid theory, electromagnetic waves, plasma waves, plasma sheaths), plasma chemistry and plasma diagnostics. Prerequisite: EEGR 6316 or equivalent. (3-0) T
MECH 6384 Applied Heat Transfer (3 semester hours) This course provides a rigorous development of heat transfer fundamentals as applied to relevant industrial problems, including heat transfer in buildings, thermal management of electronics, air conditioning & refrigeration systems and study of various thermal mechanical equipments e.g. heat exchangers and furnaces. Prerequisite: MECH 6307 or equivalent. (3-0) T
MECH 6391 (EEGR 6381) Computational Methods in Engineering (3 semester hours) Numerical techniques and their applications in engineering. Topics will include: numerical methods of linear algebra, interpolation, solution of nonlinear equations, numerical integration, Monte Carlo methods, numerical solution of ordinary and partial differential equations, and numerical solution of integral equations. Prerequisites: ENGR 2300 and ENGR 3300 or equivalents, and knowledge of a scientific programming language. (3-0) R
MECH 6v29 Special Topics in Controls and Dynamic Systems (1-6 semester hours) (May be repeated to a maximum of 9 hours.) For letter grade credit only. ([1-6]-0) R
MECH 6v49 Special Topics in Manufacturing and Design Innovation (1-6 semester hours) (May be repeated to a maximum of 9 hours.) For letter grade credit only. ([1-6]-0) R
MECH 6v69 Special Topics in Mechanics and Materials (1-6 semester hours) (May be repeated to a maximum of 9 hours.) For letter grade credit only. ([1-6]-0) R
MECH 6v89 Special topics in Thermal and Fluid Sciences (1-6 semester hours) May be repeated to a maximum of 9 hours.) For letter grade credit only. ([1-6]-0) R
MECH 6v97 Research in Mechanical Engineering (1-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([1-9]-0) R
MECH 6v98 Thesis (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) R
MECH 8v70 Research in Mechanical Engineering (1-9 semester hours) For pass/fail credit only. May be repeated for credit. ([1-9]-0) R
MECH 8v99 Dissertation (1-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([1-9]-0) S
Materials Sciences and Engineering
MSEN 5300 (PHYS 5376) Introduction to Materials Science (3 semester hours) This course provides an intensive overview of materials science and engineering and includes the foundations required for further graduate study in the field. Topics include atomic structure, crystalline solids, defects, failure mechanisms, phase diagrams and transformations, metal alloys, ceramics, polymers as well as their thermal, electrical, magnetic and optical properties. (3-0) R
MSEN 5310 Thermodynamics of Materials (3 semester hours) Work, energy and the first law of thermodynamics; the second law of thermodynamics, thermodynamic potentials, the third law of thermodynamics, thermodynamic identities and their uses, phase equilibria in one-component systems, behavior and reactions of gases. Solutions, binary and multicomponent systems: phase equilibria, materials separation and purification. Electrochemistry. Thermodynamics of modern materials. (3-0) S
MSEN 5320 Materials Science for Sustainable Energy (3 semester hours) Sustainable energy solutions require examining current fossil fuel supply, climate change, and renewable energy source development. Fossil fuel supply and climate change are intimately related, and the global community is actively developing renewable energy source to replace the fossil fuel and minimize its impact on the climate change. Materials science will enable diverse renewable energy technologies (solar cell, biofuel, wind, geothermal etc.) and their practical utilization (energy storage, fuel cell, electrical vehicles, etc.). This course will examine energy and climate issues and sustainable energy solutions with emphasis on the role of materials science. (3-0) T
MSEN 5331 (CHEM 5331) Advanced Organic Chemistry I (3 semester hours) Modern concepts of bonding and structure in covalent compounds. Static and dynamic stereochemistry and methods for study. Relationships between structure and reactivity. Prerequisite: CHEM 2325 or equivalent. (3-0) Y
MSEN 5333 (CHEM 5333) Advanced Organic Chemistry II (3 semester hours) Application of the principles introduced in CHEM 5331, emphasizing their use in correlating the large body of synthetic/preparative organic chemistry. Prerequisite: MSEN 5331/CHEM 5331. (3-0) R
MSEN 5340 (CHEM 5340) Advanced Polymer Science and Engineering (3 semester hours) Polymer structure-property relations, Linear and nonlinear viscoelasticity. Dynamic mechanical analysis, time-temperature superposition, creep and stress relaxation. Mechanical models for prediction of polymer deformation, rubber elasticity, environmental effects on polymer deformation, instrumentation for prediction of long term properties. (3-0) R
MSEN 5341 (CHEM 5341) Advanced Inorganic Chemistry I (3 semester hours) Physical inorganic chemistry addressing topics in structure and bonding, symmetry, acids and bases, coordination chemistry and spectroscopy. Prerequisite: CHEM 3341 or consent of instructor. (3-0) Y
MSEN 5344 Thermal Analysis (3 semester hours) Differential scanning calorimetry; thermogravimetric analysis; dynamic mechanical and thermomechanical analysis; glass transition; melting transitions, relaxations in the glassy state, liquid crystalline phase changes. Prerequisite: MSEN 5360 or equivalent. (3-0) R
MSEN 5353 Integrated Circuit Packaging (3 semester hours) Basic packaging concepts, materials, fabrication, testing, and reliability, as well as the basics of electrical, thermal, and mechanical considerations as required for the design and manufacturing of microelectronics packaging. Current requirements and future trends will be presented. General review of analytical techniques used in the evaluation and failure analysis of microelectronic packages. Prerequisite: MSEN 6324. (3-0) R
MSEN 5355 (CHEM 5355) Analytical Techniques I (3 semester hours) Study of fundamental analytical techniques, including optical spectroscopic techniques, mass spectrometry, and microscopic and surface analysis methods. (3-0) Y
MSEN 5356 (CHEM 5356) Analytical Techniques II (3 semester hours) Study of chromatography (GC, LC, CZE), statistical methods (standard tests and ANOVA), chemical problem solving, and modern bio/analytical techniques such as biochips, microfluidics, and MALDI-MS. Prerequisite: CHEM 5355 or consent or instructor. (3-0) R
MSEN 5360 Materials Characterization (3 semester hours) Survey of atomic and structural analysis techniques as applied to surface and bulk materials. Physical processes involved in the interaction of ions, electrons and photons with solids; characteristics of the emergent radiation in relation to the structure and composition. Prerequisite: MSEN 5300. Prerequisite or corequisite: MSEN 6319 or equivalent. (3-0) S
MSEN 5361 Fundamentals of Surface and Thin Film Analysis (3 semester hours) Survey of materials characterization techniques; Rutherford backscattering; secondary ion mass spectroscopy; ion channeling; scanning tunneling and transmission microscopy; x-ray photoelectron and Auger electron spectroscopy; x-ray and electron diffraction. Prerequisite: MSEN 5360 or equivalent. (3-0) R
MSEN 5370 Ceramics and Metals (3 semester hours) Emphasis on structure-property relationships: chemical bonding, crystal structures, crystal chemistry, electrical properties, thermal behavior, defect chemistry. Chemical and physical properties of metals and alloys. Topics include: powder preparation, sol-gel synthesis, densification, toughening mechanisms, crystal structure, thermodynamics, phase diagrams, phase transformations, oxidation, mechanical, electrical and magnetic properties. Prerequisites: MSEN 5300 and 5310 or equivalents. (3-0) R
MSEN 5371 (PHYS 5371) Solid State Physics (3 semester hours) Symmetry description of crystals, bonding, properties of metals, electronic band theory, thermal properties, lattice vibration, elementary properties of semiconductors. Prerequisites: PHYS 5301 and 5320 or equivalent. (3-0) Y
MSEN 5375 Electronic Devices Based On Organic Solids (3 semester hours) Solid state device physics based on organic condensed matter structures, including: OLEDs (organic light emitting diodes), organic FETs, organic lasers, plastic photocells, molecular electronic chips. (3-0) R
MSEN 5377 (PHYS 5377) Computational Physics of Nanomaterials (3 semester hours) This course introduces atomistic and quantum simulation methods and their applications to modeling study nanomaterials (nanoparticles, nanowires, and thin films). The course has three main parts: basic theory of materials (thermodynamics, statistical mechanics, and solid state physics), computational methods to model materials systems, and applications to practical problems. There are three main themes of the course: structure-property relationship of nanomaterials; atomistic modeling for atomic structure optimization; and quantum simulations for electronic structure study and functional property analysis. Prerequisite: MSEN 6319 or equivalent. (3-0) R
MSEN 5383 (EEMF 5383, MECH 5383, PHYS 5383) Plasma Technology (3 semester hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T
MSEN 5410 (BIOL 5410) Biochemistry (4 semester hours) Analysis of the structure and function of proteins and nucleic acids and of their interactions. Metabolic biochemistry, especially as it relates to disease states. Prerequisite: BIOL 3361 (biochemistry) or equivalent. (4-0) Y
MSEN 5440 (BIOL 5440) Cell Biology (4 semester hours) Molecular architecture and function of cells and subcellular organelles; structure and function of membranes; hormone and neurotransmitter action; growth regulation and oncogenes; immune response; eukaryotic gene expression. Prerequisites: BIOL 5410 and BIOL 5420, or the equivalent, or permission of the instructor. (4-0) Y
MSEN 6310 (MECH 6367) Mechanical Properties of Materials (3 semester hours) Phenomenology of mechanical behavior of materials at the macroscopic level and the relationship of mechanical behavior to material structure and mechanisms of deformation and failure. Topics covered include elasticity, viscoelasticity, plasticity, creep, fracture, and fatigue. Prerequisite: MECH 3301 or MSEN 5300 or equivalent. (3-0) R
MSEN 6313 (EEOP 6313) Semiconductor Opto-Electronic Devices (3 semester hours) Physical principles of semiconductor optoelectronic devices: optical properties of semiconductors, optical gain and absorption, wave guiding, laser oscillation in semiconductors, LEDs, physics of detectors, applications. Prerequisite: EE 3310 or equivalent. (3-0) R
MSEN 6319 Quantum Mechanics for Materials Scientists (3 semester hours) Quantum-mechanical foundation for study of nanometer-scale materials. Principles of quantum physics, stationary-states for one-dimensional potentials, symmetry considerations, interaction with the electromagnetic radiation, scattering, reaction rate theory, spectroscopy, chemical bonding and molecular orbital theory, solids, perturbation theory, nuclear magnetic resonance. (3-0) S
MSEN 6320 (EEMF 6320) Fundamentals of Semiconductor Devices (3 semester hours) Semiconductor material properties, band structure, equilibrium carrier distributions, non-equilibrium current-transport processes, and recombination-generation processes. Prerequisite: EEMF 6319 or equivalent. (3-0) Y
MSEN 6321 (EEMF 6321) Active Semiconductor Devices (3 semester hours) The physics of operation of active devices will be examined, including p-n junctions, bipolar junction transistors and field-effect transistors: MOSFETs, JFETS, and MESFETS. Active two-terminal devices and optoelectronic devices will be presented. Recommended co-requisite: MSEN 6320. (3-0) Y
MSEN 6322 (EEMF 6322, MECH 6348) Semiconductor Processing Technology (3 semester hours) Modern techniques for the manufacture of semiconductor devices and circuits. Techniques for both silicon and compound semiconductor processing are studied as well as an introduction to the design of experiments. Topics include: wafer growth, oxidation, diffusion, ion implantation, lithography, etch and deposition. (3-0) T
MSEN 6324 (EEMF 6324) Electronic, Optical and Magnetic Materials (3 semester hours) Foundations of materials properties for electronic, optical and magnetic applications. Electrical and thermal conduction, elementary quantum physics, modern theory of solids, semiconductors and devices, dielectrics, magnetic and optical materials properties. Prerequisite: MSEN 5300 or equivalent. (3-0) T
MSEN 6327 Semiconductor Device Characterization (3 semester hours) This course will describe the theoretical and practical considerations associated with the most common electrical and reliability characterization techniques used in the semiconductor industry. Prerequisite: (EE 6320 or MSEN 6320) or equivalent, or permission of instructor. (3-0) T
MSEN 6330 Phase Transformations (3 semester hours) Thermodynamic, kinetic, and structural aspects of metallic and ceramic phase transformations: mechanisms and rate-determining factors in solid-phase reactions; diffusion processes, nucleation theory, precipitations from solid solution, order-disorder phenomena, and applications of binary and ternary phase diagrams. Prerequisite: MSEN 5310 or equivalent. (3-0) R
MSEN 6339 Nanostructured Materials: Synthesis, Properties and Application (3 semester hours) Exploration of the synthesis, properties and applications of quantum dots, wells, rods, wires, particles and related nanostructures. The theoretical and experimental evidence for quantum-confinement effects, which are of considerable fundamental and applied interest, will be discussed. The manipulation of surface properties of nanostructures, their incorporation into bulk nanocomposites and their application to technological devices will be discussed. Prerequisites or corequisites: MSEN 5310 and MSEN 5360 and MSEN 6319 and MSEN 6324, or equivalent. (3-0) T
MSEN 6340 Advanced Electron Microscopy (3 semester hours) Theory and applications of scanning and transmission electron microscopy; sample preparation, ion beam and analytical techniques. Prerequisite: MSEN 5360 or equivalent. (3-0) Y
MSEN 6341 Advanced Electron Microscopy Laboratory (3 semester hours) Lab support for MSEN 6340. MSEN 6340 must be taken with or before MSEN 6341. (0-3) Y
MSEN 6348 (EEMF 6348, MECH 6341) Lithography and Nanofabrication (3 semester hours) Study of the principles, practical considerations, and instrumentation of major lithography technologies for nanofabrication of devices and materials. Advanced photolithography, electron beam lithography, nanoimprint lithography, x-ray lithography, ion beam lithography, soft lithography, and scanning probe lithography, basic resist and polymer science, applications in nanoelectronic and biomaterials. (3-0) Y
MSEN 6350 Imperfections in Solids (3 semester hours) Point defects in semiconductors, metals, ceramics, and nonideal defect structures; nonequilibrium conditions produced by irradiation or quenching; effects of defects on electrical and physical properties, effects of defects at interfaces between differing materials. Prerequisites: MSEN 5310 and MSEN 6324 or equivalents. (3-0) R
MSEN 6355 (BMEN 6355) Nanotechnology and Sensors (3 semester hours) Introduction to the concept of nanotechnology, in context toward designing sensors/diagnostic devices. Identifying the impact of nanotechnology in designing "state-of-the art" sensors for healthcare applications. Topics include: nanotechnology and nanomaterials, principles of sensing and transduction and heterogeneous integration toward sensor design. (3-0) Y
MSEN 6358 (BIOL 6358) Bionanotechnology (3 semester hours) Protein, nucleic acid and lipid structures. Macromolecules as structural and functional units of the intact cell. Parallels between biology and nanotechnology. Applications of nanotechnology to biological systems. (3-0) T
MSEN 6361 Deformation Mechanisms in Solid Materials (3 semester hours) Linear elastic fracture mechanics, elastic-plastic fracture mechanics, time dependent failure, creep and fatigue, experimental analysis of fracture, fracture and failure of metals, ceramics, polymers and composites. Failure analysis related to material, product design, manufacturing and product application. Prerequisite: MSEN 5300 or MECH 6301/MSEN 6310 or equivalent. (3-0) R
MSEN 6362 Diffraction Science (3 semester hours) Diffraction theory; scattering and diffraction experiments; kinematic theory; dynamical theory; x-ray topography; crystal structure analysis; disordered crystals; quasi-crystals. (3-0) R
MSEN 6371 (PHYS 6371) Advanced Solid State Physics (3 semester hours) Continuation of MSEN 5371/PHYS 5371, transport properties of semiconductors, ferroelectricity and structural phase transitions, magnetism, superconductivity, quantum devices, surfaces. Prerequisite: MSEN 5371/PHYS 5371 or equivalent. (3-0) R
MSEN 6374 (PHYS 6374) Optical Properties of Solids (3 semester hours) Optical response in solids and its applications. Lorentz, Drude and quantum mechanical models for dielectric response function. Kramers-Kronig transformation and sum rules considered. Basic properties related to band structure effects, excitons and other excitations. Experimental techniques including reflectance, absorption, modulated reflectance, Raman scattering. Prerequisite: MSEN 5371/PHYS 5371 or equivalent. (3-0) R
MSEN 6377 (PHYS 6377) Physics of Nanostructures: Carbon Nanotubes, Fullerenes, Quantum Wells, Dots and Wires (3 semester hours) Electronic bands in low dimensions. 0-D systems: fullerenes and quantum dots. Optical properties, superconductivity and ferromagnetism of fullerides. 1-D systems: nano-wires and carbon nanotubes (CNTs). Energy bands of CNTs: chirality and electronic spectrum. Metallic versus semiconducting CNT: arm-chair, zigzag and chiral tubes. Electrical conductivity and superconductivity of CNTs, thermopower. Electromechanics of SWCNT: artificial muscles. Quantum wells, FETs and organic superlattices: confinement of electrons and excitons. Integer and fractional quantum Hall effect (QHE). (3-0) R
MSEN 6382 (EEMF 6382, MECH 6347) Introduction to MEMS (3 semester hours) Study of micro-electro-mechanical devices and systems and their applications. Microfabrication techniques and other emerging fabrication processes for MEMS are studied along with their process physics. Principles of operations of various MEMS devices such as mechanical, optical, thermal, magnetic, chemical/biological sensors/actuators are studied. Topics include: bulk/surface micromachining, LIGA, microsensors and microactuators in multiphysics domain. (3-0) T
MSEN 7320 (EEMF 7320) Advanced Semiconductor Device Theory (3 semester hours) Quantum mechanical description of fundamental semiconductor devices; carrier transport on the submicron scale; heterostructure devices; quantum-effect devices. Prerequisite: EEMF 6320 and EEMF 6321. (3-0) R
MSEN 7v80 Special Topics in Materials Science and Engineering (1-6 semester hours) For letter grade credit only. (May be repeated for a maximum of 9 hours.) ([1-6]-0) S
MSEN 8v40 Individual Instruction in Materials Science and Engineering (1-6 semester hours) (May be repeated for credit.) For pass/fail credit only. ([1-6]-0) S
MSEN 8v70 Research in Materials Science and Engineering (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
MSEN 8v98 Thesis (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
MSEN 8v99 Dissertation (1-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([1-9]-0) S
Software Engineering
SE 5354 (CE 5354, CS 5354) Software Engineering (3 semester hours) Formal specification and program verification. Software life-cycle models and their stages. System and software requirements engineering; user-interface design. Software architecture, design, and analysis. Software testing, validation, and quality assurance. Corequisite: CS 5343 (CS 5343 can be taken before or at the same time as CE/CS/SE 5354) (3-0) S
SE 5v81 Special Topics in Computer Science (1-9 semester hours) Selected topics in Computer Science. (May be repeated to a maximum of 9 credit hours.) ([1-9]-0) S
SE 6301 Special Topics in Software Engineering (3 semester hours) Topics will vary. (May be repeated for credit) (3-0) S
SE 6354 (CE 6354, CS 6354) Advanced Software Engineering (3 semester hours) This course covers advanced theoretical concepts in software engineering and provides an extensive hands-on experience in dealing with various issues of software development. It involves a semester-long group software development project spanning software project planning and management, analysis of requirements, construction of software architecture and design, implementation, and quality assessment. The course will introduce formal specification, component-based software engineering, and software maintenance and evolution. Prerequisites: CE/CS/SE 5354 (or equivalent) and knowledge of Java. (3-0) S
SE 6356 (CS 6356, SYSM 6308) Software Maintenance, Evolution, and Re-Engineering (3 semester hours) Principles and techniques of software maintenance. Impact of software development process on software justifiability, maintainability, evolvability, and planning of release cycles. Use of very high-level languages and dependencies for forward engineering and reverse engineering. Achievements, pitfalls, and trends in software reuse, reverse engineering, and re-engineering. Prerequisite: CE/CS/SE 5354. (3-0) Y
SE 6357 Software Quality Assurance and Metrics (3 semester hours) Concepts of the pervasive system attributes: reliability, efficiency, maintainability, reusability, etc. Software complexity and measures. Software process measures, product measures and resource measure. Validation of software measures. Software measures and measurement theory. Measuring, monitoring and controlling reliability. Supporting tools. Prerequisite: CE/CS/SE 5354. (3-0) Y
SE 6359 (CS 6359) Object-Oriented Analysis and Design (3 semester hours) Analysis and practice of modern tools and concepts that can help produce software that is tolerant of change. Consideration of the primary tools of encapsulation and inheritance. Construction of software-ICs which show the parallel with hardware construction. Prerequisites: CE/CS/SE 5354 and either CS 3335 or CS 5336. (3-0) S
SE 6360 (CS 6360) Database Design (3 semester hours) Methods, principles, and concepts that are relevant to the practice of database software design. Database system architecture; conceptual database models; relational and object-oriented databases; database system implementation; query processing and optimization; transaction processing concepts, concurrency, and recovery; security. Prerequisite: CS 5343. (3-0) S
SE 6361 (CS 6361, SYSM 6309) Advanced Requirements Engineering (3 semester hours) System and software requirements engineering. Identification, elicitation, modeling, analysis, specification, management, and evolution of functional and non-functional requirements. Strengths and weaknesses of different techniques, tools, and object-oriented methodologies. Interactions and trade-offs among hardware, software, and organization. System and sub-system integration with software and organization as components of complex, composite systems. Transition from requirements to design. Critical issues in requirements engineering. Prerequisite: CE/CS/SE 5354. (3-0) S
SE 6362 (CS 6362) Advanced Software Architecture and Design (3 semester hours) Concepts and methodologies for the development, evolution, and reuse of software architecture and design, with an emphasis on object-orientation. Identification, analysis, and synthesis of system data, process, communication, and control components. Decomposition, assignment, and composition of functionality to design elements and connectors. Use of non-functional requirements for analyzing trade-offs and selecting among design alternatives. Transition from requirements to software architecture, design, and to implementation. State of the practice and art. Prerequisite: CE/CS/SE 5354. (3-0) S
SE 6367 (CS 6367, SE 6367, SYSM 6310) Software Testing, Validation and Verification (3 semester hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE/CS/SE 5354 or consent of instructor. (3-0) Y
SE 6387 (CS 6387) Advanced Software Engineering Project (3 semester hours) This course is intended to provide experience in a group project that requires advanced technical solutions, such as distributed multi-tier architectures, component-based technologies, automated software engineering, etc., for developing applications, such as web-based systems, knowledge-based systems, real-time systems, etc. The students will develop and maintain requirements, architecture and detailed design, implementation, and testing and their traceability relationships. Best practices in software engineering will be applied. Prerequisites: CS/SE 6361 or SYSM 6309, and CS/SE 6362. Corequisite: CE/CS/SE 6367 or SYSM 6310. (3-0) S
SE 6388 (CS 6388) Software Project Planning and Management (3 semester hours) Techniques and disciplines for successful management of software projects. Project planning and contracts. Advanced cost estimation models. Risk management process and activities. Advanced scheduling techniques. Definition, management, and optimization of software engineering processes. Statistical process control. Software configuration management. Capability Maturity Model Integration (CMMI). Prerequisite: CE/CS/SE 5354. (3-0) Y
SE 6389 (CS 6389) Formal Methods and Programming Methodology (3 semester hours) Formal techniques for building highly reliable systems. Use of abstractions for concisely and precisely defining system behavior. Formal logic and proof techniques for verifying the correctness of programs. Hierarchies of abstractions, state transition models, Petri Nets, communicating processes. Operational and definitional specification languages. Applications to reliability-critical, safety-critical, and mission-critical systems, ranging from commercial computer communication systems to strategic command control systems. Prerequisite: CE/CS/SE 5354. (3-0) Y
SE 6v81 Independent Study in Software Engineering (1-9 semester hours) Topics vary from semester to semester. May be repeated for credit as topics vary. ([1-9]-0) S
SE 7301 (CS 7301) Recent Advances in Computing (3 semester hours) Advanced topics and publications will be selected from the theory, design, and implementation issues in computing. May be repeated for credit as topics vary. Prerequisite: Consent of the instructor. (3-0) Y
SE 8v02 Topics in Software Engineering (1-6 semester hours) (May be repeated to a maximum of 9 hours.) ([1-6]-0) S
SE 8v07 Research (1-9 semester hours) Open to students with advanced standing subject to approval of the graduate adviser. May be repeated for credit (9 hours maximum). ([1-9]-0) S
SE 8v98 Thesis (3-9 semester hours) (May be repeated for credit.) ([3-9]-0) S
SE 8v99 Dissertation (1-9 semester hours) (May be repeated for credit.) ([1-9]-0) S
Systems Engineering
SYSE 6321 Systems Integration (3 semester hours) Introduction to systems integration in complex systems using the automotive sector as an example; plan, organize and manage the integration of complex automotive systems; understand the decomposition/integration paradigm to manage complexity; define metrics to define achievement of objectives; and, demonstrate ability to work in cross-functional/multi-disciplinary teams. Features of the course include: Team approach; simulated production environment including (virtual) client and vendor interaction in the face of unpredictable (virtual) external events; cross-disciplinary. Intended for a broad audience of engineering graduate students regardless of their specific knowledge or interest in automotive systems or that industry. (3-0) T
SYSE 6322 (MECH 6316) Digital Control of Automotive Powertrain Systems (3 semester hours) Digital control systems, discretization and design by equivalents. Input-output design and discrete-time state variable estimation and control. Introduction to various control problems in automotive powertrains. Application of digital control principles to automotive powertrains for internal combustion engine idle speed control and air-to-fuel ratio control. Prerequisites: EE 4310 or MECH 4310 or equivalents (3-0) T
SYSE 6323 (MECH 6323) Robust Control Systems (3 semester hours) Theory, methodology, and software tools for the analysis and design of model-based control systems with multiple actuators and multiple sensors. Control oriented model parameterizations and modeling errors. Definitions and criteria for robust stability and performance. Optimal synthesis of linear controllers. The loop shaping design method. Methods to simplify the control law. Control law discretization. Mechatronic design examples. Prerequisite: (MECH 6300 or ENGR 6331 or SYSM 6307) or equivalent. (3-0) T
SYSE 6324 (BMEN 6388, ENGR 6336, MECH 6313) Nonlinear Control Systems (3 semester hours) Differential geometric tools, feedback linearization, input-output linearization, output injection, output tracking, stability. Prerequisite: ENGR 6331 or MECH 6300 or SYSM 6307 or equivalent. (3-0) T
Systems Engineering and Management
SYSM 6301 Systems Engineering, Architecture and Design (3 semester hours) Architecture and design of large-scale and decentralized systems from technical and management perspectives. Systems architectures, requirements analysis, design tradeoffs, and reliability through case studies and mathematical techniques. International standardization bodies, engineering frameworks, processes, notations, and tool support from both theoretical and practical perspectives. (3-0) Y
SYSM 6302 Dynamics of Complex Networks and Systems (3 semester hours) Design and analysis of complex interconnected networks and systems. Basic concepts in graph theory; Eulerian and Hamiltonian graphs; traveling salesman problems; random graphs; power laws; small world networks; clustering; introduction to dynamical systems; stability; chaos and fractals. (3-0) Y
SYSM 6303 (OPRE 6301) Quantitative Introduction to Risk and Uncertainty in Business (3 semester hours) Introduction to statistical and probabilistic methods and theory applicable to situations faced by managers. Topics include: data presentation and summarization, regression analysis, fundamental probability theory and random variables, introductory decision analysis, estimation, confidence intervals, hypothesis testing, and One Way ANOVA (Some sections of this class may require a laptop computer). (3-0) S
SYSM 6304 (OPRE 6335) Risk and Decision Analysis (3 semester hours) This course provides an overview of the main concepts and methods of risk assessment, risk management, and decision analysis. The methods used in industry, such as probabilistic risk assessment, six sigma, and reliability, are discussed. Advanced methods from economics and finance (decision optimization and portfolio analysis) are presented. Prerequisite: SYSM 6303 or OPRE 6301. (3-0) T
SYSM 6305 Optimization Theory and Practice (3 semester hours) Basics of optimization theory, numerical algorithms, and applications. The course is divided into three main parts: linear programming (simplex method, duality theory), unconstrained methods (optimality conditions, descent algorithms and convergence theorems), and constrained minimization (Lagrange multipliers, Karush-Kuhn-Tucker conditions, active set, penalty and interior point methods). Applications in engineering, operations, finance, statistics, etc. will be emphasized. Students will also use Matlab's optimization toolbox to obtain practical experience with the material. (3-0) Y
SYSM 6306 (BMEN 6372, MECH 6314) Engineering Systems: Modeling & Simulation (3 semester hours) This course will present principles of computational modeling and simulation of systems. General topics covered include: parametric and non-parametric modeling; system simulation; parameter estimation, linear regression and least squares; model structure and model validation through simulation; and, numerical issues in systems theory. Techniques covered include methods from numerical linear algebra, nonlinear programming and Monte Carlo simulation, with applications to general engineering systems. Modeling and simulation software is utilized (MATLAB/SIMULINK). (3-0) Y
SYSM 6307 (ENGR 6331, MECH 6300) Linear Systems (3 semester hours) State space methods of analysis and design for linear dynamical systems. Coordinate transformations and tools from advanced linear algebra. Controllability and observability. Lyapunov stability analysis. Pole assignment, stabilizability, detectability. State estimation for deterministic models, observers. Introduction to the optimal linear quadratic regulator problem. Prerequisites: ENGR 2300 and EE 4310 or MECH 4310 or equivalent. (3-0) Y
SYSM 6308 (CS 6356, SE 6356) Software Maintenance, Evolution, and Re-Engineering (3 semester hours) Principles and techniques of software maintenance. Impact of software development process on software justifiability, maintainability, evolvability, and planning of release cycles. Use of very high-level languages and dependencies for forward engineering and reverse engineering. Achievements, pitfalls, and trends in software reuse, reverse engineering, and re-engineering. Prerequisite: CE/CS/SE 5354. (3-0) Y
SYSM 6309 (CS 6361, SE 6361) Advanced Requirements Engineering (3 semester hours) System and software requirements engineering. Identification, elicitation, modeling, analysis, specification, management, and evolution of functional and non-functional requirements. Strengths and weaknesses of different techniques, tools, and object-oriented methodologies. Interactions and trade-offs among hardware, software, and organization. System and sub-system integration with software and organization as components of complex, composite systems. Transition from requirements to design. Critical issues in requirements engineering. Prerequisite: CE/CS/SE 5354. (3-0) S
SYSM 6310 (CE 6367, CS 6367, SE 6367) Software Testing, Validation and Verification (3 semester hours) Fundamental concepts of software testing. Functional testing. GUI based testing tools. Control flow based test adequacy criteria. Data flow based test adequacy criteria. White box based testing tools. Mutation testing and testing tools. Relationship between test adequacy criteria. Finite state machine based testing. Static and dynamic program slicing for testing and debugging. Software reliability. Formal verification of program correctness. Prerequisite: CE/CS/SE 5354 or consent of instructor. (3-0) Y
SYSM 6311 (OPRE 6362) Systems Project Management in Engineering and Operations (3 semester hours) Project management is the discipline of planning, organizing and managing resources to bring about the successful completion of specific project goals and objectives. The course will cover various aspects of managing projects in engineering and operations environments including the critical path methods for planning and controlling projects, time and cost tradeoffs, resource utilization, organizational design, conflict resolution and stochastic considerations. (3-0) S
SYSM 6312 (FIN 6301) Systems Financial Management (3 semester hours) Theoretical and procedural considerations in the administration of the finance function in the individual business firm; planning, fundraising, controlling of firm finances; working capital management, capital budgeting and cost of capital. Pre-/Corequisite: OPRE 6301; AND Pre-/Corequisite: ACCT 6201; OR Pre-/Corequisite ACCT 6305, OR Consent of Instructor. (3-0) Y
SYSM 6313 (OPRE 6396, OB 6332, HMGT 6324) Systems Negotiation and Dispute Resolution (3 semester hours) This course explores the theories, processes, and practical techniques of negotiation so that students can successfully negotiate and resolve disputes in a variety of situations including interpersonal, group, and international settings. Emphasis is placed on understanding influence and conflict resolution strategies; identifying interests, issues, and positions of the parties involved; analyzing co-negotiators, their negotiation styles, and the negotiation situations; and managing the dynamics associated with most negotiations. Practical skills are developed through the use of simulations and exercises. (3-0) Y
SYSM 6314 Manufacturing & Service Systems Planning & Analysis (3 semester hours) Manufacturing & Service Systems Planning & Analysis is the study of management related to transforming inputs to outputs for both manufacturing and service organizations. Its fundamental purpose is the adding of value to inputs - materials, labor, capital and management - to create outputs - products or services which customers want - throughout the supply chain. Prerequisites: Special Registration required with department (3-0) Y
SYSM 6315 (ENTP 6398) The Entrepreneurial Experience (3 semester hours) This course is designed to provide student teams with practical experience in the investigation, evaluation and recommendation of technology and/or market entry strategies for a significant new business opportunity. Projects will be defined by the faculty and will generally focus on emerging market opportunities defined by new technologies of interest to a sponsoring corporate partner. Teams will be comprised of management and engineering graduate students, mentored by faculty and representatives of the partnering company. Evaluation will be based on papers, presentations and other deliverables defined on a case-by-case basis. Prerequisite: ENTP 6370 or consent of the instructor. (3-0) R
SYSM 6316 (ENTP 6388) Managing Innovation within the Corporation (3 semester hours) Innovators and entrepreneurs within established corporations combine innovation, creativity and leadership to develop and launch new products, new product lines and new business units that grow revenues and profits from within. The course seeks to equip students with the skills and perspectives required to initiate new ventures and create viable businesses in dynamic and uncertain environments in the face of organizational inertia and other sources of resistance to innovation. Course topics include the elements of strategic analysis and positioning for competitive advantage in dynamic markets, and the structuring, utilization and mobilization of the internal resources of existing firms in the pursuit of growth and new market opportunities. (3-0) Y
SYSM 6317 (OPRE 6395) The Management of High Tech Products (3 semester hours) Building on the premise that successful product management involves getting the right product to the right customer at the right price at the right time, the course will teach techniques in product identification and requirements; product development; management of internal resources, including manufacturing, sales and management; costing and pricing decisions; product planning and winning the right design win. (3-0) Y
SYSM 6318 (MKT 6301) Marketing Management (3 semester hours) Overview of marketing management methods, principles and concepts including product, pricing, promotion and distribution decisions as well as segmentation, targeting and positioning. (3-0) S
SYSM 6319 (MECO 6303) Business Economics (3 semester hours) Foundations of the economic analysis of business problems, with special emphasis on the operation of markets and the macroeconomy. Prerequisite: MATH 5304 or equivalent. (3-0) S
SYSM 6320 (BPS 6332) Strategic Leadership (3 semester hours) Addresses the challenge of leading organizations in dynamic and challenging environments. Overall goal is to not only question one's assumptions about leadership, but also enhance skills and acquire new content knowledge. Topics include visionary and transformational leadership; post-heroic leadership; empowerment; leveraging and combining resources; designing organizations; and ethics. (3-0) Y
SYSM 6321 Financial Engineering I (3 semester hours) Introduction to finance and investments from an engineering perspective. Focuses on the principles underlying financial decision making which are applicable to all forms of investment: stocks, bonds, real estate, project budgeting, corporate finance, and more. Intended for students with strong technical backgrounds who are comfortable with mathematical arguments. Primary components: deterministic finance (interest rates, bonds, and simple cash flow analysis); single period uncertainty finance (portfolios of stocks and pricing theory). Prerequisites: Calculus I and II, basic probability, and (ENGR 3341 or equivalent). (3-0) Y
SYSM 6332 (ENTP 6375, OPRE 6394) Technology and New Product Development (3 semester hours) This course addresses the strategic and organizational issues confronted by firms in technology-intensive environments. The course reflects six broad themes: (1) managing firms in technology-intensive industries; (2) forecasting key industry and technology trends; (3) linking technology and business strategies; (4) using technology as a source of competitive advantage; (5) organizing firms to achieve these goals; and (6) implementing new technologies in organizations. Students will analyze actual situations in organizations and summarize their findings and recommendations in an in-depth term paper. Case studies and class participation are stressed. (3-0) Y
SYSM 6333 (OB 6301) Systems Organizational Behavior (3 semester hours) The study of human behavior in organizations. Emphasizes theoretical concepts and practical methods for understanding, analyzing, and predicting individual, group, and organizational behavior. Topics include work motivation, group dynamics, decision making, conflict and negotiation, leadership, power, and organizational culture. Ethical and international considerations are also addressed. (3-0) S
SYSM 6v70 Research In Systems Engineering and Management (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) R
SYSM 6v80 Special Topics in Systems Engineering and Management (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) S
SYSM 6v90 Thesis (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
SYSM 6v98 Systems Management Internship (1-3 semester hours) Student gains experience and improves skills through appropriate developmental work assignments in a real business environment. Student must identify and submit specific business learning objectives at the beginning of the semester. The student must demonstrate exposure to the managerial perspective via involvement or observation. At semester end, student prepares an oral or poster presentation, or a written paper reflecting on the work experience. Student performance is evaluated by the work supervisor. Consent of the SEM Program Director, the School of Engineering Internship Coordinator, and the School of Management Internship Coordinator is required. May be repeated for credit. ([1-3]-0) S
SYSM 7321 Financial Engineering II (3 semester hours) Advanced theory, methods, and applications of financial engineering. Major topics include: advanced theory of derivative pricing and hedging, optimal portfolio growth and general investment evaluation, and quantitative and control based methods in dynamic portfolio optimization and hedging. Computational methods and an engineering approach will be emphasized. Prerequisite: SYSM 6321 or permission of instructor. (3-0) Y
Telecommunications Engineering
TE 5341 Probability, Statistics, and Random Processes in Engineering (3 semester hours) Introduction to probability modeling and the statistical analysis in engineering and computer science. Introduction to Markov chains models for discrete and continuous time queuing systems in Telecommunications. Computer simulations. Prerequisite: Undergraduate degree in engineering and computer science. (3-0) R
TE 6378 (CE 6378 and CS 6378) Advanced Operating Systems (3 semester hours) Concurrent processing, inter-process communication, process synchronization, deadlocks, introduction to queuing theory and operational analysis, topics in distributed systems and algorithms, checkpointing, recovery, multiprocessor operating systems. Prerequisites: CS 5348 or equivalent; knowledge of C and UNIX. (3-0) S
TE 6385 (CS 6385) Algorithmic Aspects of Telecommunication Networks (3 semester hours) This is an advanced course on topics related to the design, analysis, and development of telecommunications systems and networks. The focus is on the efficient algorithmic solutions for key problems in modern telecommunications networks, in centralized and distributed models. Topics include: main concepts in the design of distributed algorithms in synchronous and asynchronous models, analysis techniques for distributed algorithms, centralized and distributed solutions for handling design and optimization problems concerning network topology, architecture, routing, survivability, reliability, congestion, dimensioning and traffic management in modern telecommunication networks. Prerequisites: CS 5343, CS 5348, and CE/EE/TE 3341 or equivalents. (3-0) Y
TE 7v81 Special Topics in Telecommunications (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
TE 8v40 Individual Instruction in Telecommunications Engineering (1-6 semester hours) (May be repeated for credit.) For pass/fail credit only. ([1-6]-0) S
TE 8v70 Research in Telecommunications Engineering (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
TE 8v98 Thesis (3-9 semester hours) (May be repeated for credit.) For pass/fail credit only. ([3-9]-0) S
TE 8v99 Dissertation (1-9 semester hours) May be repeated for credit. For pass/fail credit only. ([1-9]-0) S