UT Dallas 2022 Graduate Catalog

Physics

PHYS 5301 Mathematical Methods of Physics I (3 semester credit hours) Vector analysis (and index notation); Cylindrical and Spherical coordinates; Sturm-Liouville theory; Legendre Functions; Differential Equations (including Green Functions). (3-0) Y

PHYS 5302 Mathematical Methods of Physics II (3 semester credit hours) Functions of Complex Variable (including contour integration and the residue theorem); Tensor Analysis; Gamma and Beta functions; and Bessel functions. (3-0) Y

PHYS 5305 Monte Carlo Simulation Method and its Application (3 semester credit hours) An introductory course on the method of Monte Carlo simulation of physical events. This course covers the generation of 0-1 random number, simulation of arbitrary distributions, modeling, simulation and statistical analysis of experimental activities in physics research and engineering studies. As a comparison the concepts and applications of the Neural Networks will be discussed. Prerequisites: Background knowledge in probability and statistics and in a programming language or instructor consent required. (3-0) T

PHYS 5311 Classical Mechanics (3 semester credit hours) A course that aims to provide intensive training in problem solving. Rigorous survey of Newtonian mechanics of systems, including its relativity principle; the ellipsoid of inertia and its eigenstructure, with applications, Poinsot's theorem; Euler's equations, spinning tops; Lagrangian and Hamiltonian formalism with applications; chaos, small oscillations, velocity dependent potentials, Lagrange multipliers and corresponding constraint forces, canonical transformations, Lagrange and Poisson brackets, Hamilton-Jacobi theory. (3-0) Y

PHYS 5313 Statistical Physics (3 semester credit hours) Phase space, distribution functions and density matrices; microcanonical, canonical and grand canonical ensembles; partition functions; principle of maximum entropy; thermodynamic potentials and laws of thermodynamics; classical and quantum ideal gases; non-interacting magnetic moments; phonons and specific heat of solids; degenerate electron gas, its specific heat and magnetism; statistics of carriers in semiconductors; Bose-Einstein condensation; Black-body radiation; Boltzmann transport equation and H-theorem; relaxation time and conductivity; Brownian motion, random walks and Langevin equation; Einstein's relation; fluctuations in ideal gases; linear response and fluctuation-dissipation theorem; virial and cluster expansions, van der Waals equation of state; Poisson-Boltzmann and Thomas-Fermi equations; phases, phase diagrams and phase transitions of the first and second order; lattice spin models; ordering, order parameters and broken symmetries; Mean-field theory of ferromagnetism; Landau and Ginzburg-Landau theories; elements of modern theory of critical phenomena. (3-0) Y

PHYS 5315 Scientific Computing (3 semester credit hours) An introduction to computational methods for: Machine precision, truncation, and rounding errors. Linear algebra, Gauss-Jordan Elimination, LU Decomposition, Singular Value Decomposition. Least squares fitting, linear, polynomial. Interpolation, cubic spline, rational function. Integration. Special functions. Sorting and Selection. Root Finding and Nonlinear Sets of Equations. Random numbers. Monte Carlo Methods. Optimization, minimization or maximization, random searching, hill climbing, simulated annealing, genetic algorithms. Eigensystems. Fourier methods. Wavelets. ODEs and PDEs. Brief introduction to machine learning. Prerequisite or Corequisite: PHYS 5301. (3-0) Y

PHYS 5319 (SCI 5326) Astronomy (3 semester credit hours) Focus is on developing student understanding of how our planet fits within a larger astronomical context. Topics include common misconceptions in astronomy, scale in the Solar System and beyond, phases of the Moon, seasons, navigating the night sky, our Sun as a star, space weather, properties and lifecycles of stars, galaxies, and cosmology. (3-0) T

PHYS 5320 Electromagnetism I (3 semester credit hours) Electrostatic boundary value problems, uniqueness theorems, method of images, Green's functions, multipole potentials, Legendre polynomials and spherical harmonics, dielectric and magnetic materials, magnetostatics, time-varying field and Maxwell's equations, energy and momentum of the field, Lienard-Wiechert potentials, electromagnetic radiation, polarization, refraction and reflection at plane interfaces. (3-0) Y

PHYS 5322 Electromagnetism II (3 semester credit hours) Fields and potentials, Gauge transformations and the wave equation. Electromagnetic waves in unbounded media - non-dispersive and dispersive media. Boundary conditions at interfaces. Solutions to the wave equation in rectangular cylindrical and spherical coordinates. Electromagnetic waves in bonded media - waveguides and resonant cavities. Radiating systems - electric and magnetic dipole radiation, electric quadruple radiation. Fundamentals of scattering and scalar diffraction. Lorentz transformation and covariant forms for Maxwell's equations. Radiation from moving charges - Synchrotron, Cherenkov and Bremstrahlung Radiation. Prerequisite: PHYS 5320 or equivalent. (3-0) Y

PHYS 5327 (SCI 5327) Comparative Planetary Science (3 semester credit hours) Every world in the solar system is unique, but none more so than our own planet Earth. The course is an exploration of the astrophysical, chemical, and geological processes that have shaped each planet, moons and the myriad of rocky and icy bodies in our solar system with a special emphasis on what each tells us about Earth, and what discoveries of worlds orbiting other stars may tell us about our planetary system and home world. (3-0) T

PHYS 5331 (SCI 5331) Conceptual Physics I: Force and Motion (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics, emphasizing its applicability to the pre-college and undergraduate classroom. Uses inquiry-based approaches including examples of physics in the everyday world and connections to other fields of science. Topics include foundational concepts of forces, Newton's laws, energy, and momentum. Instructor consent required. (3-0) T

PHYS 5332 (SCI 5332) Conceptual Physics II: Particles and Systems (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics emphasizing its applicability to the pre-college and undergraduate classroom. Uses an inquiry-based approach including examples of physics in the everyday world and connections to other fields of science. This second class in the Conceptual Physics series builds on concepts from SCI 5331 to explore transfers of energy and forces within and between systems of particles. Topics include states of matter, fluids, waves and sound, and thermodynamics. Instructor consent required. (3-0) T

PHYS 5333 (SCI 5333) Conceptual Physics III: Atoms, Charges, and Interactions (3 semester credit hours) Focus is on deepening the participants' conceptual understanding of physics, emphasizing critical thinking and applications to the pre-college and undergraduate classroom. Uses inquiry-based approaches including examples of physics in the everyday world and connections to other fields of science. This third class in the Conceptual Physics series builds on concepts from SCI 5331 and SCI 5332 to explore interactions between particles of matter. Topics include inter- and intra-molecular forces, light, electricity and magnetism, and the nature of the atom. (3-0) T

PHYS 5336 Big Data and Machine Learning for Scientific Discovery (3 semester credit hours) This class introduces a wide range of machine learning techniques suitable for Big Data analysis. The techniques covered include multivariate non-linear non-parametric regression and classification, both supervised and unsupervised. These approaches are directly applicable to many issues of major scientific and societal importance. The practical tools introduced (Neural Networks, Support Vector Regression, Decision Trees, Random Forests, etc) can be readily used in a wide range of applications from research to real time decision support. The data used can come from a wide variety of sources including scientific instrumentation, social media, remote sensing, aerial vehicles, and the internet of things. (3-0) R

PHYS 5340 Quantum Computing (3 semester credit hours) Physics of information processing; quantum logic; quantum algorithms including Shor's factoring algorithm; physics hardware for quantum computation; quantum communications; error corrections. Prerequisite: Math 2418 or equivalent. (3-0) T

PHYS 5341 (SCI 5341) Astrobiology (3 semester credit hours) The ultimate integrated science, astrobiology brings together cutting-edge research from the fields of astrophysics, planetary science, terrestrial geosciences, and biology, to build understanding of how the history and diversity of life on our own planet relates to the possibilities for life on other worlds. This graduate-level survey course is designed to challenge participants of all backgrounds in a thoughtful and scientifically-based exploration of the young and dynamic multidisciplinary field of astrobiology. Instructor consent required. (3-0) T

PHYS 5371 (MSEN 5371) Solid State Physics (3 semester credit hours) Symmetry description of crystals, bonding, properties of metals, electronic band theory, thermal properties, lattice vibration, elementary properties of semiconductors. Prerequisites: PHYS 5301 and PHYS 5320 or equivalent. (3-0) Y

PHYS 5376 (MECH 5300 and MSEN 5300) Introduction to Materials Science (3 semester credit hours) This course provides an extensive overview of materials science and engineering and includes the foundations required for further graduate study in the field. Topics include chemical bonding, crystalline structures, imperfections and diffusion in solids, mechanical properties, strengthening and failure mechanisms, phase diagrams and transformations, corrosion and degradation of materials, metal alloys, ceramics, polymers, composites, as well as their electrical, thermal, magnetic, and optical properties. Quantitative analyses will be emphasized. (3-0) R

PHYS 5377 (MSEN 5377) Computational Physics of Nanomaterials (3 semester credit hours) This course introduces atomistic and quantum simulation methods and their applications to modeling study nanomaterials (nanoparticles, nanowires, and thin films). The course has three main parts: basic theory of materials (thermodynamics, statistical mechanics, and solid state physics), computational methods to model materials systems, and applications to practical problems. There are three main themes of the course: structure-property relationship of nanomaterials; atomistic modeling for atomic structure optimization; and quantum simulations for electronic structure study and functional property analysis. Prerequisite: MSEN 6319 or equivalent. (3-0) R

PHYS 5381 Space Science (3 semester credit hours) Introduction to the dynamics of the middle and upper atmospheres, ionospheres and magnetospheres of the earth and planets and the interplanetary medium. Topics include: turbulence and diffusion, photochemistry, aurorae and airglow, space weather and the global electric circuit. (3-0) R

PHYS 5383 (EEMF 5383) Plasma Technology (3 semester credit hours) Hardware oriented study of useful laboratory plasmas. Topics will include vacuum technology, gas kinetic theory, basic plasma theory and an introduction to the uses of plasmas in various industries. (3-0) T

PHYS 5391 Relativity I (3 semester credit hours) Mach's principle and the abolition of absolute space; the principle of relativity; the principle of equivalence; basic cosmology; four-vector calculus; special relativistic kinematics, optics, mechanics, and electromagnetism; basic ideas of general relativity. (3-0) T

PHYS 5392 Relativity II (3 semester credit hours) Tensor calculus and Riemannian geometry; mathematical foundation of general relativity; the crucial tests; fundamentals of theoretical relativistic cosmology; the Friedmann model universes; comparison with observation. Normally follows PHYS 5391. (3-0) T

PHYS 5395 Cosmology (3 semester credit hours) The course is an overview of contemporary cosmology including: cosmological models of the universe and their parameters; large scale structure of the universe; dark matter; cosmological probes and techniques such as gravitational lensing, cosmic microwave background radiation, and supernova searches; very early stages of the universe; dark energy and recent cosmic acceleration. (3-0) T

PHYS 5V48 Topics in Physics (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). Instructor consent required. ([1-6]-0) R

PHYS 6300 Quantum Mechanics I (3 semester credit hours) Dirac formalism, kets, bras, operators and position, momentum, and matrix representations, change of basis, Stern-Gerlach experiment, observables and uncertainty principle, translations, wave functions, time evolution, the Schrodinger and Heisenberg pictures, simple harmonic oscillator, wave equation, WKB approximation, rotations, angular momentum, spin, Clebsch-Gordan coefficients, perturbation theory, variational methods. Prerequisite: PHYS 5311 or instructor consent required. (3-0) Y

PHYS 6301 Quantum Mechanics II (3 semester credit hours) Non-relativistic many-particle systems and their second quantization description with creation and annihilation operators; Interactions and Hartree-Fock approximation, quasi-particles; attraction of fermions and superconductivity; repulsion of e bosons and super fluidity; lattice systems, classical fields and canonical quantization of wave equations; free electromagnetic field, gauges and quantization: photons; coherent states; Interaction of light with atoms and condensed systems: emission, absorption and scattering; vacuum fluctuations and Casimir force; elements of relativistic quantum mechanics: Klein-Gordon and Dirac equations; particles and antiparticles; spin-orbit coupling; fine structure of the hydrogen atom; micro-causality and spin-statistics theorem; non-relativistic scattering theory: scattering amplitudes, phase shifts, cross-section and optical theorem; Born series; inelastic and resonance scattering; perturbative analysis of the interacting fields: Time evolution and interaction representation, S-matrix and Feynman diagrams; simple scattering processes; Dyson's equation, self-energy and renormalization. Prerequisite: PHYS 6300. (3-0) Y

PHYS 6314 High Energy Physics (3 semester credit hours) Electromagnetic and nuclear interactions of particles with matter; particle detectors; accelerators and colliding beam machines; invariance principles and conservation laws; hadron-hadron interactions; static quark model of hadrons; weak interactions; lepton-quark interactions; the parton model of hadrons; fundamental interactions and their unification; generalized gauge invariance; the Weinberg-Salam Model and its experimental tests: quantum chromo-dynamics; quark-quark interactions; grand unification theories; proton decay, magnetic monopoles, neutrino oscillations and cosmological aspects; supersymmetries. (3-0) R

PHYS 6371 (MSEN 6371) Advanced Solid State Physics (3 semester credit hours) Continuation of MSEN 5371 or PHYS 5371, transport properties of semiconductors, ferroelectricity and structural phase transitions, magnetism, superconductivity, quantum devices, surfaces. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R

PHYS 6374 (MSEN 6374) Optical Properties of Solids (3 semester credit hours) Optical response in solids and its applications. Lorentz, Drude and quantum mechanical models for dielectric response function. Kramers-Kronig transformation and sum rules considered. Basic properties related to band structure effects, excitons and other excitations. Experimental techniques including reflectance, absorption, modulated reflectance, Raman scattering. Prerequisite: MSEN 5371 or PHYS 5371 or equivalent. (3-0) R

PHYS 6377 (MSEN 6377) Physics of Nanostructures: Carbon Nanotubes, Fullerenes, Quantum Wells, Dots and Wires (3 semester credit hours) Electronic bands in low dimensions. 0-D systems: fullerenes and quantum dots. Optical properties, superconductivity and ferromagnetism of fullerides. 1-D systems: nano-wires and carbon nanotubes (CNTs). Energy bands of CNTs: chirality and electronic spectrum. Metallic versus semiconducting CNT: arm-chair, zigzag and chiral tubes. Electrical conductivity and superconductivity of CNTs, thermopower. Electromechanics of SWCNT: artificial muscles. Quantum wells, FETs and organic superlattices: confinement of electrons and excitons. Integer and fractional quantum Hall effect (QHE). (3-0) R

PHYS 6383 (EEMF 6383 and MECH 6383) Plasma Science (3 semester credit hours) Theoretically oriented study of plasmas. Topics to include: fundamental properties of plasmas, fundamental equations (kinetic and fluid theory, electromagnetic waves, plasma waves, plasma sheaths), plasma chemistry and plasma diagnostics. Prerequisite: EEGR 6316 or equivalent. (3-0) T

PHYS 8V10 Research in High Energy Physics and Elementary Particles (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V20 Research in Cosmology and Astrophysics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V40 Research in Applied Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V45 Research in Chemical Physics and Biophysics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V50 Research in Atomic and Molecular Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V60 Research in Optics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V65 Research in Quantum Information Science (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V70 Research in Materials Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V80 Research in Atmospheric and Space Physics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V88 Research in Geophysics (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) S

PHYS 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S