NOTE> Changes made here will filter out to both the Mathematics and Biological Sciences degree program pages.

Master of Science in Bioinformatics and Computational Biology

36 semester credit hours minimum

Mathematics Faculty

FACG> nsm-bioinformatics-and-computational-biology-ms-math

Professors: Larry P. Ammann, Zalman I. Balanov, Swati Biswas, Pankaj K. Choudhary, Mieczyslaw K. Dabkowski, Vladimir Dragovic, Sam Efromovich, Yulia Gel, M. Ali Hooshyar, Wieslaw Krawcewicz, Susan E. Minkoff, L. Felipe Pereira, Dmitry Rachinskiy, Viswanath Ramakrishna, Janos Turi, John Zweck

Professors Emeritus: Patrick Odell, John W. Van Ness

Clinical Professors: Natalia Humphreys, Wenyi (Roy) Lu

Associate Professors: Yan Cao, Min Chen

Clinical Associate Professor: Mohammad Akbar

Assistant Professors: Maxim Arnold, Carlos Arreche, Bhargab Chattopadhyay, Sy Han (Steven) Chiou, Qingwen Hu, Frank Konieptschke, Yifei Lou, Oleg Makarenkov, Tomoki Ohsawa, Sunyoung Shin, Anh Tran, Nathan Williams

Associate Professor of Instruction: My Linh Nguyen

Senior Lecturers: Mohammad Ahsan, Kelly Aman, Malgorzata Dabkowska, Rabin Dahal, Anatoly Eydelzon, Manjula Foley, Bentley T. Garrett, Yuly Koshevnik, David L. Lewis, Changan Li, Brady McCary, Derege Mussa, Paul Stanford, Julie Sutton, Tristan Whalen

UT Dallas Affiliated Faculty: Hervé Abdi, Titu Andreescu, Alain Bensoussan, Stefano Leonardi, Faruck Morcos, Zhenyu Xuan, Hyuntae Yoo, Michael Qiwei Zhang

Mathematics Faculty With Research Interests in Bioinformatics and Computational Biology: Swati Biswas, Yan Cao, and Min Chen

Biology Faculty

FACG> nsm-bioinformatics-and-computational-biology-ms-biol
The Master of Science program in Bioinformatics and Computational Biology is an interdisciplinary program offered jointly by the Departments of Mathematical Sciences and Biological Sciences, with the former serving as the administrative unit. By combining coursework from the disciplines of Biology, Computer Science, Mathematics, and Statistics, it caters to the growing demand of a new breed of scientists who have expertise in all these disciplines. In addition to coursework, the program also provides opportunities to gain practical experience by getting involved in research with faculty members.

A successful applicant to the program is expected to have a Bachelor's degree in Biology, Mathematics, Statistics, or in another science/engineering discipline, and must have completed Differential and Integral Calculus courses. Additional coursework in one or more of the disciplines of Biology, Computer Science, Mathematics, and Statistics is desirable but is not required.

The University's general degree requirements are discussed on the Graduate Policies and Procedures page.

The MS program in Bioinformatics and Computational Biology requires completion of at
least 36 semester credit hours. The program offers a choice between two tracks. Track 1 is
designed for students with a general background in science/engineering, whereas Track 2 is
designed for students with a strong background in biology. To build further expertise, both
tracks offer a choice of three elective groups, namely, Computer Science oriented, Statistics
oriented, and Biology oriented elective groups. Both also offer opportunities for research.
Students are expected to choose a track and an elective group based on their backgrounds
and interests in consultation with the Graduate Advisor for the program.

Track 1 (MS)

I. Core: 15 semester credit hours

- **BMEN 6374** Genes, Proteins and Cell Biology for Engineers
- **BIOL 6V00** Topics in Biological Sciences (Computational Molecular Evolution)
- **CS 5303** Computer Science I
- **MATH 5303** Advanced Calculus and Linear Algebra
- **STAT 5351** Probability and Statistics I (for Elective Group 2)

or **STAT 5353** Probability and Statistics for Data Science and Bioinformatics (for
Elective Groups 1 and 3)

II. Elective Groups (Choose one elective group)

Elective Group 1 (Computer Science Oriented): 15 semester credit hours

- **CS 5343** Algorithm Analysis and Data Structures
- **MATH 6312** Combinatorics and Graph Theory
- **MATH 6341** Bioinformatics

or **BIOL 5376** Applied Bioinformatics

- **MATH 6346** Medical Image Analysis

AND one of the following:

- **CS 6307** Introduction to Big Data Management and Analytics for non-CS Majors
- **CS 6314** Web Programming Languages
- **CS 6360** Database Design
Elective Group 2 (Statistics Oriented): 18 semester credit hours

- STAT 5352 Probability and Statistics II
- STAT 6337 Advanced Statistical Methods I
- STAT 6338 Advanced Statistical Methods II
- STAT 6340 Statistical and Machine Learning
- MATH 6341 Bioinformatics
- or BIOL 5376 Applied Bioinformatics
- MATH 6346 Medical Image Analysis

Elective Group 3 (Biology oriented): 15 semester credit hours

- MATH 6341 Bioinformatics
- or BIOL 5376 Applied Bioinformatics
- MATH 6345 Mathematical Methods in Medicine and Biology
- MATH 6346 Medical Image Analysis

AND two of the following:

- BIOL 5375 Genes to Genomes
- BIOL 5381 Genomics
- BIOL 6315 Epigenetics
- BIOL 6373 Proteomics
- BIOL 6385 Computational Biology
- or BMEN 6389 Computational Biology
- or MATH 6343 Computational Biology

III. Research or Elective(s) or a Combination Thereof

- Elective Group 1: 6 semester credit hours
- Elective Group 2: 3 semester credit hours
- Elective Group 3: 6 semester credit hours
Track 2 (MS)

I. Core: 14 semester credit hours

[BIOL 5410] Biochemistry

[BIOL 5420] Molecular Biology

[STAT 5351] Probability and Statistics I (for Elective Group 2)

or [STAT 5353] Probability and Statistics for Data Science and Bioinformatics (for Elective Groups 1 and 3)

[MATH 5303] Advanced Calculus and Linear Algebra

II. Elective Groups (Choose one elective group)

Elective Group 1 (Computer Science oriented): 18 semester credit hours

[CS 5303] Computer Science I

[CS 5343] Algorithm Analysis and Data Structures

[MATH 6312] Combinatorics and Graph Theory

[MATH 6341] Bioinformatics

or [BIOL 5376] Applied Bioinformatics

[MATH 6346] Medical Image Analysis

AND one of the following:

[CS 6307] Introduction to Big Data Management and Analytics for non-CS Majors

[CS 6314] Web Programming Languages

[CS 6360] Database Design

[CS 6375] Machine Learning

Elective Group 2 (Statistics oriented): 18 semester credit hours

[STAT 5352] Probability and Statistics II

[STAT 6337] Advanced Statistical Methods I

[STAT 6338] Advanced Statistical Methods II
Elective Group 3 (Biology oriented): At least 18 semester credit hours

MATH 6341 Bioinformatics

or **BIOL 5376** Applied Bioinformatics

MATH 6346 Medical Image Analysis

MATH 6345 Mathematical Methods in Medicine and Biology

AND two of the following:

BIOL 5375 Genes to Genomes

BIOL 5381 Genomics

BIOL 6315 Epigenetics

BIOL 6373 Proteomics

BIOL 6385 Computational Biology

or **BMEN 6389** Computational Biology

or **MATH 6343** Computational Biology

BIOL 6V00 Topics in Biological Sciences (Computational Molecular Evolution)

BIOL 6V00 Topics in Biological Sciences (Introduction to Programming for Biological Sciences)

III. Research or Elective(s) or a Combination Thereof

All Elective Groups: 4 semester credit hours

Other Requirements

- For a PhD bound student in the Department of Biological Sciences, **BIOL 5440** Cell Biology and **BIOL 5460** Quantitative Biology (or an equivalent) are required. This requirement can be fulfilled by taking these courses as 'electives' in the
Bioinformatics and Computational Biology program.

• Electives must be approved by the Graduate Advisor of the program.
• Substitutions for required courses may be made if approved by the Graduate Advisor of the program and the Head of the Mathematical Sciences Department.
• A student may choose to write an MS thesis under the supervision of a faculty member. The thesis project can count for 3 to 6 semester credit hours of electives towards the required 36 hours, in accordance with University policies. The thesis must be approved by the Head of the Mathematical Sciences Department. Once the thesis project is completed, the student must successfully defend it before his/her thesis committee.

1. Students who have not taken the CS 5333 Discrete Structures prerequisite for CS 5343 Algorithm Analysis and Data Structures should consult with their Graduate Advisor from the Mathematical Sciences Department to determine eligibility.