Computer Engineering

CE 5325 (EEDG 5325) Hardware Modeling Using HDL (3 semester credit hours) This course introduces students to hardware description languages (HDL) beginning with simple examples and describing tools and methodologies. It covers the language, dwelling on fundamental simulation concepts. Students are also exposed to the subset of HDL that may be used for synthesis of custom logic. HDL simulation and synthesis labs and projects are performed using commercial and/or academic VLSI CAD tools. Prerequisite: **EE 3320** or equivalent. (3-0) T

CE 5381 Curriculum Practical Training in Computer Engineering (3 semester credit hours) This course is required of students who need additional training in engineering practice. May not be used to fulfill degree requirements in MS Computer Engineering. May be repeated for credit (9 semester credit hours maximum). Department consent required. (3-0) S

CE 6301 (EEDG 6301) Advanced Digital Logic (3 semester credit hours) Modern design techniques for digital logic. Logic synthesis and design methodology. Link between front-end and back-end design flows. Field programmable gate arrays and reconfigurable digital systems. Introduction to testing, simulation, fault diagnosis and design for testability. Prerequisites: **EE 3320** or equivalent and background in VHDL/Verilog. (3-0) T

CE 6302 (EEDG 6302) Microprocessor Systems (3 semester credit hours) Design of microprocessor based systems including I/O and interface devices. Microprocessor architectures. Use of emulators and other sophisticated test equipment. Extensive laboratory work. Prerequisites: **EE 4304** or equivalent and background in VHDL/Verilog. (2-3) Y

CE 6303 (EEDG 6303) Testing and Testable Design (3 semester credit hours) Techniques for detection of failures in digital circuits and systems. Fault modeling and detection. Functional testing and algorithms for automatic test pattern generation (ATPG). Design of easily testable digital systems. Techniques for introducing built-in self test (BIST) capability. Test of various digital modules, such as PLA’s, memory circuits, datapath, etc. Prerequisites: **EE 3320** or equivalent and background in VHDL/Verilog. (3-0) Y

CE 6304 (CS 6304 and EEDG 6304) Computer Architecture (3 semester credit hours) Trends in processor, memory, I/O and system design. Techniques for quantitative analysis and evaluation of computer systems to understand and compare alternative design choices in system design. Components in high performance processors and computers: pipelining, instruction level parallelism, memory hierarchies, and input/output. Students will undertake a major computing system analysis and design project. Must have an understanding of C/C++. Prerequisite: **CS 3340** or **EE 4304**. (3-0) Y

CE 6305 (EEDG 6305) Computer Arithmetic (3 semester credit hours) Carry look ahead systems and carry save adders. Multipliers, multi-bit recoding schemes, array multipliers, redundant binary schemes, residue numbers, slash numbers. High-speed division and square root circuits. Multi-precision algorithms. The IEEE floating point standard, rounding processes, guard bits, error accumulation in arithmetic processes. Cordic algorithms. Prerequisites: **EE 3320** and C/C++. (3-0) Y

CE 6306 (EEDG 6306) Application Specific Integrated Circuits Design (3 semester credit hours) This course
discusses the design of application specific integrated circuits (ASIC). Specific topics include: VLSI system
design specification, ASIC circuit structures, synthesis, and implementation of an ASIC digital signal
processing (DSP) chip. Prerequisite: EE 3320. (3-0) Y

CE 6307 (EEDG 6307) Fault-Tolerant Digital Systems (3 semester credit hours) Advanced concepts in
hardware and software fault tolerance. Topics include fault models, coding in computer systems, fault
detection mechanisms, fault-tolerant routing, reconfiguration techniques, and software fault tolerance
techniques such as recovery blocks, N-version programming, checkpointing, and application-level error
resilience, etc. Survey of practical fault-tolerant systems. Prerequisites: EEDG 6301 and ENGR 3341 or
equivalent. (3-0) R

CE 6308 (CS 6396 and EEDG 6308) Real-Time Systems (3 semester credit hours) Introduction to real-time
applications and concepts. Real-time operating systems and resource management. Specification and
design methods for real-time systems. System performance analysis and optimization techniques. Project
to specify, analyze, design, implement and test small real-time system. Prerequisite: CS 5348. (3-0) R

CE 6325 (EECT 6325) VLSI Design (3 semester credit hours) Introduction to MOS transistors. Analysis of the
CMOS inverter. Combinational and sequential design techniques in VLSI; issues in static, transmission gate
and dynamic logic design. Design and layout of complex gates, latches and flip-flops, arithmetic circuits,
memory structures. Low power digital design. The method of logical effort. CMOS technology. Use of CAD
tools to design, layout, check, extract and simulate a small project. Prerequisites: EE 3301 and EE 3320 or
equivalent. (3-0) S

CE 6345 (EEDG 6345) Engineering of Packet-Switched Networks (3 semester credit hours) Detailed
coverage, from the point of view of engineering design, of the physical, data-link, network and transport
layers of IP (Internet Protocol) networks. This course is a master's level introduction to packet networks.
Prior knowledge of digital communication systems is strongly recommended. Prerequisite: EE 3350 or
equivalent. (3-0) Y

CE 6370 (EEDG 6370) Design and Analysis of Reconfigurable Systems (3 semester credit hours) Introduction
to reconfigurable computing, programmable logic: FPGAS, CPLDs, CAD issues with FPGA based design,
reconfigurable systems: emulation, custom computing, and embedded application based computing, static
and dynamic hardware, evolutionary design, software environments for reconfigurable systems.
Prerequisite: EE 3320 or equivalent. (3-0) R

CE 6375 (EEDG 6375) Design Automation of VLSI Systems (3 semester credit hours) This course deals with
various topics related to the development of CAD tools for VLSI systems design. Algorithms, data
structures, heuristics and design methodologies behind CAD tools. Design and analysis of algorithms for
layout, circuit partitioning, placement, routing, chip floor planning, and design rule checking (DRC).
Introduction to CAD algorithms for RTL and behavior level synthesis, module generators, and silicon
compilation. (3-0) Y

CE 6398 (CS 6398 and EEDG 6398) DSP Architectures (3 semester credit hours) Typical DSP algorithms,
representation of DSP algorithms, data-graph, FIR filters, convolutions, Fast Fourier Transform, Discrete
Cosine Transform, low power design, VLSI implementation of DSP algorithms, implementation of DSP
algorithms on DSP processors, DSP applications including wireless communication and multimedia.
Prerequisite: CS 5343. (3-0) Y

https://catalog.utdallas.edu/2018/graduate/courses/ce
CE 6399 (CS 6399) Parallel Architectures and Systems (3 semester credit hours) A comprehensive study of the fundamentals of parallel systems and architecture. Topics including parallel programming environment, fine-grain parallelism such as VLIW and superscalar, parallel computing paradigm of shared-memory, distributed-memory, data-parallel and data-flow models, cache coherence, compiling techniques to improve parallelism, scheduling theory, loop transformations, loop parallelizations and run-time systems. Prerequisite: CS 5348. (3-0) T

CE 6V98 Thesis (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ((3-9)-0) S

CE 7302 Hardware/Software Co-design (3 semester credit hours) Fundamental concepts in the design of complex digital systems consisting of hardware and software components. Topics include system description and modeling, efficient systems partitioning, hardware/software synthesis, compilation and behavioral optimization, embedded computing systems, telecommunications systems using general-purpose and special-purpose digital signal processors, and rapid prototyping and emulation using field programmable gate arrays. Prerequisites: CE 6301 and CE 6302 and CE 6304. (3-0) Y

CE 7303 Hardware Verification (3 semester credit hours) This course deals with advanced issues related to the formal verification of complex digital systems. Topics include Binary Decision Diagrams (BDDs) and their application to representation and verification of digital systems, use of abstraction and rigorous analysis methods to solve complicated design problems, etc. Prerequisites: CE 6301 and CE 6303 and CE 6325. (3-0) Y

CE 7304 (EEDG 7304) Advanced Computer Architecture (3 semester credit hours) Advanced research topics in multiprocessor, CPU/GPGPU, storage-class non-volatile memory, main memory, network, and reconfigurable architectures. Focuses on current research in the area of computer system architecture to prepare students for a career in computer architecture research. Course will use articles from current technical literature to discuss relevant topics, such as digital signal processors, VLIW, and SIMD architectures, GPU and non-volatile memory architectures, low-power architectures, application-specific processors, and system on chip architectures. Prerequisites: CS 5348 and EEDG 6304 and knowledge of C/ C++. (3-0) R

CE 7325 (EECT 7325) Advanced VLSI Design (3 semester credit hours) Advanced topics in VLSI design covering topics beyond the first course (EECT 6325). Topics include: use of high-level design, synthesis, and simulation tools, clock distribution and routing problems, (a)synchronous circuits, low-power design techniques, study of various VLSI-based computations, systolic arrays, etc. Discussions on current research topics in VLSI design. Prerequisite: EECT 6325 or equivalent. (3-0) R

CE 7328 (EEDG 7328) Physical Design of High-Speed VLSI Circuits (3 semester credit hours) Techniques for the physical design of high-speed VLSI circuits. Topics related to interconnection circuit modeling, performance-driven routing, buffer and wire sizing, placement and floor planning, technology mapping and performance evaluation issues encountered in high-speed VLSI circuit designs. Discussion of state-of-the-art practical industrial design examples. A project related to the development of a prototype CAD tool. Prerequisites: (CE or EECT 6325) and knowledge of programming in C. (3-0) T

CE 7V80 Special Topics in Computer Engineering (1-6 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum.) Prerequisite: ENCS majors only and instructor consent
CE 8V40 Individual Instruction in Computer Engineering (1-6 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-6]-0) R

CE 8V70 Research in Computer Engineering (3-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([3-9]-0) R

CE 8V99 Dissertation (1-9 semester credit hours) Pass/Fail only. May be repeated for credit. Instructor consent required. ([1-9]-0) S