Erik Jonsson School of Engineering and Computer Science

Department of Computer Science

Computer Science (BS)

The Computer Science Department offers the **BS degree in Computer Science** and the **BS degree in Software Engineering**. Both are based on a solid foundation of mathematics, including calculus, and discrete mathematics. These programs of study are designed to offer students opportunities to prepare for an industrial, business, or governmental career in a rapidly changing profession and to prepare for graduate study in a field in which further education is strongly recommended. The two programs have the same basis in core computer science, including the analysis of algorithms and data structures, modern programming methodologies, and the study of operating systems. The Computer Science program continues with courses in advanced data structures, programming languages, telecommunications networks, and automata theory, while the Software Engineering program includes courses in requirements engineering, software validation and testing, and software architecture, culminating in a challenging project course in which students must demonstrate use of software engineering techniques. Both programs offer a rich choice of elective studies, including courses in artificial intelligence, computer graphics, and compiler design.

The school offers a "fast track" BS / MS option; see [Fast Track Baccalaureate/Master's Degree Program](https://catalog.utdallas.edu/2015/undergraduate/programs/ecs/computer-science).

Mission of the Department of Computer Science

The mission of the Department of Computer Science is to prepare undergraduate and graduate students for productive careers in industry, academia, and government by providing an outstanding environment for teaching, learning, and research in the theory and applications of computing. The Department places high priority on establishing and maintaining innovative research programs to enhance its education quality and make it an important regional, national, and international resource center for discovering, integrating and applying new knowledge and technologies.

Goals for the Computer Science Program

The undergraduate Computer Science program is committed to provide students with a high-quality education and prepare them for long and successful careers in industry and government.

Our graduates, while eminently ready for immediate employment, will also be fully ready for focused training as required for specific positions in Computer Science and closely related areas. Graduates interested in highly technical careers, research, and/or academia will be fully prepared to further their education in graduate school.

Program Educational Objectives for Computer Science

Within a few years after graduation, graduates of the Computer Science program should:

- Have a successful, long-lived, computer science based career path.
- Meet the needs of industry or academia.
• Contribute to, and/or lead, computer science based teams.
• Actively pursue continuing (lifelong) learning.

ABET Accreditation

The BS program in Computer Science is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

Bachelor of Science in Computer Science

Degree Requirements (124 semester credit hours)\(^1\)

Faculty

Professors Emeritus: William J. Pervin, Klaus Truemper

Associate Professors: Sergey Bereg, Lawrence Chung, Jorge A. Cobb, Xiaohu Guo, Kevin Hamlen, Murat Kantarcioglu, Yang Liu, Andrian Marcus, Neeraj Mittal, Yu-Chung (Vincent) Ng, Kamil Sarac, Haim Schweitzer, Rym Zalila-Wenkstern

Assistant Professors: Álvaro Cárdenas, Vibhav Gogate, Zhiqiang Lin, Cong Liu, Ryan McMahan, Nicholas Ruozzi, Lingming Zhang

Research Professor: Ranavir Bose

Senior Lecturers: Ebru Cankaya, Michael Christiansen, John Cole, Chris I. Davis, Timothy (Tim) Farage, Neeraj Gupta, Shyam Karrah, Pushpa Kumar, Khiem Le, Richard K. Min, Linda Morales, Nhu Nguyen, Mehra Nouroz Borazjany, Greg Ozbirn, Mark Paulk, Miguel Razo-Razo, William (Bill) Semper, Charles Shields Jr., Jason W. Smith, Janell Straach, Jeyakesavan (Jey) Veerasamy, Don G. Vogel, Nurcan Yuruk

Affiliated Faculty: Milind Dawande, Eakta Jain

I. Core Curriculum Requirements: 42 semester credit hours\(^2\)

Communication: 6 semester credit hours

[RHET 1302](https://catalog.utdallas.edu/2015/undergraduate/programs/ecs/computer-science) Rhetoric

[ECS 3390](https://catalog.utdallas.edu/2015/undergraduate/programs/ecs/computer-science) Professional and Technical Communication\(^3\)

Mathematics: 3 semester credit hours

[MATH 2413](https://catalog.utdallas.edu/2015/undergraduate/programs/ecs/computer-science) Differential Calculus\(^4\)

or [MATH 2417](https://catalog.utdallas.edu/2015/undergraduate/programs/ecs/computer-science) Calculus I\(^4\)

Life and Physical Sciences: 6 semester credit hours

[PHYS 2325](https://catalog.utdallas.edu/2015/undergraduate/programs/ecs/computer-science) Mechanics\(^5\)
PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture: 3 semester credit hours
Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts: 3 semester credit hours
Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History: 6 semester credit hours
Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science: 6 semester credit hours
 GOVT 2305 American National Government
 GOVT 2306 State and Local Government

Social and Behavioral Sciences: 3 semester credit hours
 ECS 3361 Social Issues and Ethics in Computer Science and Engineering

Component Area Option: 6 semester credit hours
 MATH 2413 Differential Calculus
 or MATH 2417 Calculus I
 MATH 2419 Calculus II
 PHYS 2125 Physics Laboratory I

II. Major Requirements: 71 semester credit hours

Major Preparatory Courses: 20 semester credit hours beyond Core Curriculum
 ECS 1100 Introduction to Engineering and Computer Science
 CS 1200 Introduction to Computer Science and Software Engineering
 CS 1337 Computer Science I
 CS 2305 Discrete Mathematics for Computing I
 CS 2336 Computer Science II
 MATH 2413 Differential Calculus
 or MATH 2417 Calculus I
 MATH 2418 Linear Algebra
 MATH 2414 Integral Calculus
or **MATH 2419** Calculus II

PHYS 2125 Physics Laboratory I

PHYS 2126 Physics Laboratory II

PHYS 2325 Mechanics

PHYS 2326 Electromagnetism and Waves

3 semester credit hours Science Elective

Major Core Courses: 42 semester credit hours beyond Core Curriculum

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 3162</td>
<td>Professional Responsibility in Computer Science and Software Engineering</td>
</tr>
<tr>
<td>CS 3305</td>
<td>Discrete Mathematics for Computing II</td>
</tr>
<tr>
<td>CS 3340</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>CS 3341</td>
<td>Probability and Statistics in Computer Science and Software Engineering</td>
</tr>
<tr>
<td>CS 3345</td>
<td>Data Structures and Introduction to Algorithmic Analysis</td>
</tr>
<tr>
<td>CS 3354</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>CS 3367</td>
<td>C/C++ Programming in a UNIX Environment</td>
</tr>
<tr>
<td>ECS 3361</td>
<td>Social Issues and Ethics in Computer Science and Engineering</td>
</tr>
<tr>
<td>ECS 3390</td>
<td>Professional and Technical Communication</td>
</tr>
<tr>
<td>CS 4141</td>
<td>Digital Systems Laboratory</td>
</tr>
<tr>
<td>CS 4337</td>
<td>Organization of Programming Languages</td>
</tr>
<tr>
<td>CS 4341</td>
<td>Digital Logic and Computer Design</td>
</tr>
<tr>
<td>CS 4347</td>
<td>Database Systems</td>
</tr>
<tr>
<td>CS 4348</td>
<td>Operating Systems Concepts</td>
</tr>
<tr>
<td>CS 4349</td>
<td>Advanced Algorithm Design and Analysis</td>
</tr>
<tr>
<td>CS 4384</td>
<td>Automata Theory</td>
</tr>
<tr>
<td>CS 4485</td>
<td>Computer Science Project</td>
</tr>
</tbody>
</table>

Major Guided Electives: 9 semester credit hours

CS guided electives are 4000 level CS courses approved by the student's CS advisor. The following courses may be used as guided electives without the explicit approval of an advisor:

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 4314</td>
<td>Intelligent Systems Analysis</td>
</tr>
<tr>
<td>CS 4315</td>
<td>Intelligent Systems Design</td>
</tr>
<tr>
<td>CS 4334</td>
<td>Numerical Analysis</td>
</tr>
<tr>
<td>CS 4336</td>
<td>Advanced Java</td>
</tr>
</tbody>
</table>
III. Elective Requirements: 11 semester credit hours

Free Electives: 11 semester credit hours

Both lower- and upper-division courses may count as free electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the University can be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.
Fast Track Baccalaureate/Master’s Degrees

In response to the need for post-baccalaureate education in the exciting field of computer science, a Fast Track program is available to well-qualified UT Dallas undergraduate students. Qualified seniors may take up to 15 graduate semester credit hours that may be used to complete the baccalaureate degree and also to satisfy requirements for the master's degree. Interested students should see the Associate Dean of Undergraduate Education (ADU) for specific requirements.

Honors Programs

The Department of Computer Science offers an Honors Program called Computer Science Computing Scholars (CS2). (CS2) is an intense Bachelor of Science in Computer Science Degree Program created for exceptionally gifted students who wish to pursue a demanding course of study enriched throughout with research experiences. The Computing Scholars Program has a specially designed curriculum. Courses integrate discussion of current research, recent discoveries, and open problems into a rich logical progression of firmly related topics. Course numbers for the Core Curriculum Requirements and Major Requirements are the same as those for the Bachelor of Science in Computer Science, but Computing Scholars take honors versions of the following courses: ECS 1100, CS 2305, CS 3305, CS 3340, CS 3341, CS 3345, CS 3354, CS 4141, CS 4337, CS 4341, CS 4348, CS 4349, CS 4384, and CS 4485.

Admission to the program is mainly by nomination and invitation. Those invited to join the Computing Scholars Honors Program will have successfully completed a full and challenging high school curriculum, will have achieved high scores on the SAT or ACT tests, and will be about to graduate from high school, or equivalent, with high class rank. Successful participants will graduate with the added distinction of a Computing Scholars Honors Diploma.

For more information about this program students should contact the Computer Science Department leadership.

Certificates

A Certificate in Information Assurance can be obtained by completing the following (as well as any required prerequisites):

- CS 4389 Data and Applications Security
- CS 4393 Computer and Network Security
- CS 4398 Digital Forensics

The certificate is intended for those individuals who are working in the industry and who already have background similar to a BS degree. CS and SE majors that complete the required classes, as well as students that complete the Minor in Information Assurance will be awarded certificates in Information Assurance.

1. Incoming freshmen must enroll and complete requirements of UNIV 1010 and the corresponding school-related freshman seminar course. Students, including transfer students, who complete their core curriculum at UT Dallas must take UNIV 2020.
2. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.
3. Semester credit hours fulfill the communication component of the Core Curriculum.
4. Three semester credit hours of Calculus are counted under Mathematics Core, and five semester credit hours of Calculus are counted as Component Area Option Core.

5. Six semester credit hours of Physics are counted under Science core, and one semester credit hour of Physics (PHYS 2125) is counted as Component Area Option Core.

6. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.

7. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.