Economic, Political and Policy Sciences

EPPS 6313 Introduction to Quantitative Methods (3 semester credit hours) This introductory graduate-level statistics course is geared to the consumption of statistical methods commonly used in social science research. Topics include creating and interpreting graphical and tabular summaries of data, descriptive statistics, basic probability theory, sampling distributions, basic hypothesis testing (t-tests, chi-square tests, and analysis of variance), estimation of population parameters, confidence intervals and correlation. An introduction to regression analysis will also be provided. Topics are supported by computer-supported data analyses. (3-0) Y

EPPS 6316 Applied Regression (3 semester credit hours) This course provides a survey of the bivariate and multiple regression models estimated using Ordinary Least Squares (OLS), with an emphasis on using regression models to test social and economic hypotheses. This application-focused course presents examples drawn from economics, political science, public policy and sociology, introduces the basic concepts and interpretation of regression models, and basic methods of inference. Topics are supported by computer-supported data analyses. Prerequisite: EPPS 6313 or EPPS 7313. (3-0) Y

EPPS 6320 Short Courses in Contemporary Social Science Research Methods (3 semester credit hours) This course is comprised of three tutorial sessions that each last two full days over the course of an academic year. Each session is an intensive survey of a different modern statistical methodology that is regularly used in the social sciences. In order to get credit, the student must attend all six days. Students will need to enroll for the course in the Fall semester. Pass/Fail only. (3-0) Y

EPPS 6324 Data Management for Social Science Research (3 semester credit hours) Covers the principles and practical techniques of data cleaning, data organization, quality control, and automation of research tasks. Topics covered will include data types, useful text and math functions, labeling, recoding, data documentation, merging datasets, reshaping, and programming structures such as macros, loops, and branching using Stata and R. The course will also discuss using LaTeX to automate outputting of results and graphics in publishable formats. Prerequisite: EPPS 6313 or EPPS 7313 or instructor consent required. (3-0) R

EPPS 6342 Research Design II (3 semester credit hours) This course is the second in a two-course sequence devoted to the study of data development strategies and techniques to facilitate effective statistical analysis. Topics generally covered include: the logic of causal inquiry and inference in the Economic, Political and Policy Sciences, the elaboration paradigm and model specification, anticipating and handling threats to internal validity, hierarchies of design structure (experimental, quasi-experimental and non-experimental): linking design structure to effect estimation strategies and analyzing design elements in published literature. Students will be required to select a research topic in consultation with the instructor and prepare a written comparative design analysis. Recommended: EPPS 6310 or EPPS 6316 or equivalent. (3-0) Y

EPPS 6346 Qualitative Research Methods (3 semester credit hours) This course provides an overview of qualitative research in the Economic, Political and Policy Sciences. Students will investigate the assumptions underlying qualitative research approaches and critically assess the strengths and weaknesses of such approaches. Possible topics may include participant observation, ethnographic interviewing, ethnomethodology, conversation analysis, case study, and the analysis of historical documents. (3-0) T

EPPS 6352 Evaluation Research Methods in the Economic, Political and Policy Sciences (3 semester credit hours) A review of research methods used in program evaluation, with an
emphasis on public and nonprofit social programs. Issues to be addressed include research
design, appropriate performance standards, measurement and selection of individuals,
sampling, data collection, and data analysis. (3-0) Y

EPPS 6360 (NATS 6360) Research Methods (3 semester credit hours) There is a growing global
awareness amongst the academic community that skills and competency training must now be
included when preparing graduate students for the 21st century workforce needs. For Master's
and PhD students the attributes most frequently referenced sought across a broad range of
employment sectors, include critical and creative thinking, analysis and synthesis of data,
research methodology, ethics, scientific writing, teamwork, and creative presentation skills. The
aim of the course on Research Methods is to help graduate students develop the skills
necessary to succeed professionally and academically in a way that they can develop and
manage their careers across a broad range of employment sectors in both academic and non-
academic settings. Prerequisites: Admission to the School of Natural Sciences and Mathematics
or the School of Economic, Political and Policy Sciences graduate program and the student's
departmental graduate advisor consent required. (3-0) Y

EPPS 7304 Cost-Benefit Analysis (3 semester credit hours) Examines methods for measuring
costs and benefits of public projects and policies, and the application of cost-benefit analysis to
areas such as economic development, water resources, recreation, transportation, regulation,
and the environment. (3-0) R

EPPS 7313 Descriptive and Inferential Statistics (3 semester credit hours) The course provides a
thorough introduction to probability and statistics. Probability topics covered include random
variables, expectations, and probability distributions. The heart of the course is a rigorous
introduction to statistical inference: sampling theory, confidence intervals, and hypothesis
tests. The final section of the course is an introduction to regression analysis, with an emphasis
on interpretation of regression results, using examples from recent research. Recommended:
one semester of calculus. (3-0) Y

EPPS 7316 Regression and Multivariate Analysis (3 semester credit hours) This course provides
a detailed examination of the multiple regression models estimated using Ordinary Least
Squares (OLS), with an emphasis on using regression models to test social and economic
hypotheses. Also covered are several special topics in regression analysis, including violations
of OLS assumptions, the use of dummy variables, and fixed effects models. The course ends
with an introduction to advanced topics in regression analysis, qualitative response models,
and non-OLS approaches to estimation. Topics are supported by computer-supported data
analyses using application-specific software. Prerequisite: EPPS 7313. (3-0) Y

EPPS 7318 Structural Equation and Multilevel (Hierarchical) Modeling (3 semester credit hours)
An introduction to structural equation modeling (SEM) and multilevel modeling (MLM),
sometimes called hierarchical linear or mixed modeling. SEM represents a general approach to
the statistical examination of the fit of a theoretical model to empirical data. Topics include
observed variable (path) analysis, latent variable models (e.g., confirmatory factor analysis), and
latent variable SEM analyses. MLM represents a general approach to handling data that are
nested within each other or have random components. Topics include dealing with two-level
data that may be cross-sectional, such as students within classes, or longitudinal, such as
repeated observations on individuals, firms or countries. Recommended prerequisite: EPPS 731
6 or equivalent. Prerequisite: ECON 6306 or ECON 6309 or EPPS 6316 or instructor consent
required. (3-0) R

EPPS 7344 Categorical and Limited Dependent Variables (3 semester credit hours) This course
examines several types of advanced regression models that are frequently used in policy
analysis and social science research. The key similarity of these models is that they involve
dependent variables that violate one or more of the assumptions of the Ordinary Least
Squares (OLS) regression model. The main models examined in the course are binary logit and
probit, multinomial logit, ordinal probit, tobit, and the family of Poisson regression models. All these models are estimated using maximum likelihood estimation (MLE). The Heckman correction for selection is also addressed. Recommended: EPPS 6316 or the equivalent. (3-0) Y

EPPS 7368 Spatial Epidemiology (3 semester credit hours) Examines the conceptual and analytic tools used to understand how spatial distributions of exposure impact processes and patterns of disease. Emphasizes the special design, measurement, and analysis issues associated with spatial patterns of diseases. Contemporary diseases of public health importance are addressed, and the statistical and inferential skills are provided that can be used in understanding how spatial patterns arise and their implications for intervention. Prerequisite: EPPS 6313 or equivalent. (3-0) R

EPPS 7370 Time Series Analysis I (3 semester credit hours) This course considers several important topics for applied time series analyses of social science and public policy data including the specification and testing of Box-Jenkins ARIMA models and dynamic regressions. Other topics include stationarity and unit root tests, cointegration and error correction models, autoregressive conditional heterogeneity (GARCH) models and introductions to vector autoregression (VAR) and state space models. Students learn how to use modern software such as Eviews, R, RATS and Stata to do time series analyses. Recommended: EPPS 7316 or equivalent. (3-0) R

EPPS 7371 Time Series Analysis II (3 semester credit hours) This course introduces intermediate and advanced methods for the analysis of social science time series data. After reviewing core time series concepts such as stationarity and cointegration, the course considers topics such as vector autoregression and vector error correction models, simultaneous equation and structural time series models, regime switching models, non-Gaussian and nonlinear models, and state space representations. Both frequentist and Bayesian approaches to modeling time series processes are employed. Data analyses are implemented using widely available software packages such as R, RATS and Stata. Prerequisite: EPPS 7370 or instructor consent required. (3-0) R

EPPS 7386 Survey Research (3 semester credit hours) This course exposes students to the use of survey methods in social science research. Emphasis is placed on interview and questionnaire techniques and the construction and sequencing of survey questions. Attention is also devoted to sampling theory, sampling and non-sampling errors, and the use of recent advances in fieldwork to reduce measurement error in surveys. Recommended: EPPS 6313 or equivalent. (3-0) R

EPPS 7390 Bayesian Analysis for Social and Behavioral Sciences (3 semester credit hours) This course covers the theory and application of Bayesian statistics for economic, political, and other social science data. Students will learn how maximum likelihood and Bayesian estimation are related and how the latter is used to develop decision based inference. Topics include subjective probability, general linear models, posterior simulation methods, model specification and averaging, and sensitivity analysis. Prerequisite: EPPS 7316 or equivalent. (3-0) R

EPPS 7V81 Special Topics in Social Science Research Methodology (1-9 semester credit hours) May be repeated for credit as topics vary (9 semester credit hours maximum). (3-0) R

EPPS 7V88 Workshop in Teaching Effectiveness (1-3 semester credit hours) Workshop will focus on preparing students for positions as teaching assistants, lecturers, and those who expect to teach as a career in the social sciences. Emphasis will be placed on videotaped student presentations and feedback, guest presentations, and student visits to EPPS faculty classes. May be repeated for credit (3 semester credit hours maximum). ([1-3]-0) R

EPPS 8V95 Frontiers of Social Science Research Methods (1-3 semester credit hours) Students working on dissertations or research papers receive feedback and advice on research methods, the discussion of methods in their writing, and presentation of results. Pass/Fail only. May be
repeated for credit. ([1-3]-0) R