Computer Science (BS) and Software Engineering (BS)

Faculty

Professor Emeritus: Klaus Truemper

Associate Professors: Sergey Bereg, Lawrence Chung, Jorge A. Cobb, Kendra M. L. Cooper, Xiaohu Guo, Kevin Hamlen, Murat Kantarcioglu, Yang Liu, Andrian Marcus, Neeraj Mittal, Yu-Chung (Vincent) Ng, Kamil Sarac, Haim Schweitzer, Rym Zalila-Wenkstern

Assistant Professors: Alvaro Cárdenas, Vibhav Gogate, Zhiqiang Lin, Cong Liu, Ryan McMahan, Nicholas Ruozzi, Lingming Zhang

Senior Lecturers: Ebru Cankaya, Michael Christiansen, John Cole, Chris I. Davis, Timothy (Tim) Farage, Neeraj Gupta, Shyam Karrah, Pushpa Kumar, Linda Morales, Nhut Nguyen, Greg Ozbirn, Mark Paulk, Miguel Razo-Razo, William (Bill) Semper, Charles Shields Jr., Jason W. Smith, Janell Straach, Jeyakesavan (Jey) Veerasamy, Don G. Vogel

The Computer Science Department offers the BS degree in Computer Science and the BS degree in Software Engineering. Both are based on a solid foundation of mathematics, including calculus, linear algebra, and discrete mathematics. These programs of study are designed to offer students opportunities to prepare for an industrial, business, or governmental career in a rapidly changing profession and to prepare for graduate study in a field in which further education is strongly recommended. The two programs have the same basis in core computer science, including the analysis of algorithms and data structures, modern programming methodologies, and the study of operating systems. The Computer Science program continues with courses in advanced data structures, programming languages, telecommunications networks, and automata theory, while the Software Engineering program include courses in requirements engineering, software validation and testing, and software architecture, culminating in a challenging project course in
which students must demonstrate use of software engineering techniques. Both programs offer a rich choice of elective studies, including courses in artificial intelligence, computer graphics, databases, and compiler design.

The school offers a "fast track" BS / MS option; see Fast Track Baccalaureate/Master's Degree Program.

Mission of the Department of Computer Science

The mission of the Department of Computer Science is to prepare undergraduate and graduate students for productive careers in industry, academia, and government by providing an outstanding environment for teaching, learning, and research in the theory and applications of computing. The Department places high priority on establishing and maintaining innovative research programs to enhance its education quality and make it an important regional, national, and international resource center for discovering, integrating and applying new knowledge and technologies.

Software Engineering (BS)

Goals of the Software Engineering Program

The focus of the Software Engineering degree is to provide world class education in modern software engineering. The overall goals of the Bachelor of Science in Software Engineering Program are:

- To prepare students for software engineering positions in industry or government.
- To prepare students for graduate study in Software Engineering.
- To provide a solid foundation in Computer Science and Software Engineering principles that will allow graduates to adapt effectively in a quickly changing field.

Program Educational Objectives for Software Engineering

Within a few years after graduation, graduates of the Software Engineering Program should:

- Have a successful, long-lived, software engineering based career path.
- Meet the needs of industry or academia.
- Contribute to, and/or lead, software engineering based teams.
- Actively pursue continuing (lifelong) learning.

ABET Accreditation

The BS program in Software Engineering is accredited by the Engineering Accreditation Commission of ABET, www.abet.org.
Bachelor of Science in Software Engineering

Degree Requirements (123 semester credit hours)¹

I. Core Curriculum Requirements: 42 semester credit hours²

Communication: 6 semester credit hours
- RHET 1302 Rhetoric
- ECS 3390 Professional and Technical Communication³

Mathematics: 3 semester credit hours
- MATH 2413 Differential Calculus⁴
 - or MATH 2417 Calculus I⁴

Life and Physical Sciences: 6 semester credit hours⁵
- PHYS 2325 Mechanics
- PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture: 3 semester credit hours
- Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts: 3 semester credit hours
- Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History: 6 semester credit hours
- Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science: 6 semester credit hours
- GOVT 2305 American National Government
- GOVT 2306 State and Local Government

Social and Behavioral Sciences: 3 semester credit hours
- ECS 3361 Social Issues and Ethics in Computer Science and Engineering⁶

Component Area Option: 6 semester credit hours
II. Major Requirements: 70 semester credit hours

Major Preparatory Courses: 20 semester credit hours beyond Core Curriculum

- **ECS 1200** Introduction to Engineering and Computer Science
- **CS 1337** Computer Science I
- **CS 2305** Discrete Mathematics for Computing I
- **CS 2336** Computer Science II
- **MATH 2413** Differential Calculus
 - or **MATH 2417** Calculus I
- **MATH 2418** Linear Algebra
- **MATH 2414** Integral Calculus
 - or **MATH 2419** Calculus II
- **PHYS 2125** Physics Laboratory I
- **PHYS 2126** Physics Laboratory II
- **PHYS 2325** Mechanics
- **PHYS 2326** Electromagnetism and Waves
- 4 semester credit hours Science Elective

Major Core Courses: 38 semester credit hours beyond Core Curriculum

- **SE 3162** Professional Responsibility in Computer Science and Software Engineering
- **SE 3306** Mathematical Foundations of Software Engineering
- **SE 3340** Computer Architecture
- **SE 3341** Probability and Statistics in Computer Science and Software Engineering
- **CS 3345** Data Structures and Introduction to Algorithmic Analysis
- **CS 3354** Software Engineering
- **ECS 3361** Social Issues and Ethics in Computer Science and Engineering
- **SE 3376** C/C++ Programming in a UNIX Environment

https://catalog.utdallas.edu/2014/undergraduate/programs/ecs/software-engineering
ECS 3390 Professional and Technical Communication

CS 4348 Operating Systems Concepts

SE 4351 Requirements Engineering

SE 4352 Software Architecture and Design

SE 4367 Software Testing, Verification, Validation and Quality Assurance

SE 4381 Software Project Planning and Management

SE 4485 Software Engineering Project

Major Guided Electives: 12 semester credit hours

SE guided electives are 4000 level CS/SE courses approved by the student's CS/SE advisor. The following courses may be used as guided electives without the explicit approval of an advisor:

CS 4141 Digital Systems Laboratory
CS 4314 Intelligent Systems Analysis
CS 4315 Intelligent Systems Design
CS 4334 Numerical Analysis
CS 4337 Organization of Programming Languages
CS 4341 Digital Logic and Computer Design
CS 4349 Advanced Algorithm Design and Analysis
CS 4352 Human Computer Interactions I
CS 4353 Human Computer Interactions II
CS 4361 Computer Graphics
CS 4365 Artificial Intelligence
CS 4375 Introduction to Machine Learning
CS 4384 Automata Theory
CS 4386 Compiler Design
CS 4389 Data and Applications Security
CS 4390 Computer Networks
CS 4391 Introduction to Computer Vision
CS 4392 Computer Animation
CS 4393 Computer and Network Security
CS 4394 Implementation of Modern Operating Systems
Application Domains: 9 semester credit hours

An important aspect of Software Engineering education is the use of software engineering concepts in a particular application domain. Students should use two or three of their guided electives to complete one of the applications domains below. Additional application domains may become available. Completing an application domain may require careful scheduling since many of these classes will not be offered every semester. It is strongly encouraged that you consult with an advisor.

Networks: 9 semester credit hours

CS 4390 Computer Networks
CS 4393 Computer and Network Security
CS 4396 Networking Laboratory

Information Assurance: 9 semester credit hours

CS 4389 Data and Applications Security
CS 4393 Computer and Network Security
CS 4398 Digital Forensics

Embedded Systems: 9 semester credit hours

CS 4141 Digital Systems Laboratory
CS 4341 Digital Logic and Computer Design
CS 4397 Embedded Computer Systems
CS 4348 Operating Systems Concepts
Computer Imaging: 9 semester credit hours

CS 4361 Computer Graphics
CS 4391 Introduction to Computer Vision
CS 4392 Computer Animation

Artificial Intelligence and Cognitive Modeling: 9 semester credit hours; take 3 of 5

CS 4314 Intelligent Systems Analysis
CS 4315 Intelligent Systems Design
CS 4365 Artificial Intelligence
CS 4375 Introduction to Machine Learning
CS 4395 Human Language Technologies

Human-Computer Interaction: 9 semester credit hours

CS 4352 Human Computer Interactions I
CS 4353 Human Computer Interactions II
CS 4361 Computer Graphics

III. Elective Requirements: 11 semester credit hours

Free Electives: 11 semester credit hours

All students must accumulate at least 123 semester credit hours of university credit to graduate. Both lower- and upper-division courses may count as free electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Degree programs in the Erik Jonsson School of Engineering and Computer Science are governed by various accreditation boards that place restrictions on classes used to meet the curricular requirements of degrees they certify. For this reason, not all classes offered by the university can be used to meet elective requirements. Please check with your academic advisor before enrolling in classes you hope to use as free electives.

Fast Track Baccalaureate/Master’s Degrees

In response to the need for post-baccalaureate education in the exciting field of software engineering, a Fast Track program is available to well-qualified UT Dallas undergraduate students. At the end of five years of successful study, it is possible to earn both the BS degree in Software Engineering and the MS degree in Computer Science or the MS degree in Software Engineering. Qualified seniors may take up to 15 graduate semester credit hours that may be used to complete
the baccalaureate degree and also to satisfy the requirements for the master's degree. Interested students should see the Associate Dean of Undergraduate Education (ADU) for specific requirements.

Interested students should see the Associate Dean of Undergraduate Education (ADU) for specific admission requirements to the Fast Track program.

Honors Programs

The Department of Computer Science offers two Honors Programs. The first program is an upper-division honors program for outstanding students in the BS in Computer Science and BS in Software Engineering degree programs. This Honors program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to this Honors program requires a 3.500 or better GPA (grade point average) in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes, including a Senior Thesis or Senior Design Project class. For more details, contact the Office of Undergraduate Advising (ECS South 2.502; 972-883-2004).

Departmental Honors with Distinction may be awarded to students whose Senior Thesis or Senior Design Project is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to MS Theses and PhD Dissertations in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

The second program, called Computer Science Computing Scholars (CS2) is an intense Bachelor of Science in Computer Science Degree Program created for exceptionally gifted students who wish to pursue a demanding course of study enriched throughout with research experiences. The Computing Scholars Program has a specially designed curriculum. Courses integrate discussion of current research, recent discoveries, and open problems into a rich logical progression of firmly related topics. Course numbers for the Core Curriculum Requirements and Major Requirements are the same as those for the Bachelor of Science in Computer Science, but Computing Scholars take honors versions of the following courses: **ECS 1200, CS 2305, CS 3305, CS 3340, CS 3341, CS 3345, CS 3354, CS 4141, CS 4337, CS 4341, CS 4348, CS 4349, CS 4384, CS 4485**.

Admission to the program is mainly by nomination and invitation. Those invited to join the Computing Scholars Honors Program will have successfully completed a full and challenging high school curriculum, will have achieved high scores on the SAT or ACT tests, and will be about to graduate from high school, or equivalent, with high class rank.

Successful participants will graduate with the added distinction of a Computing Scholars Honors Diploma.

For more information about this program students should contact the Computer Science Department leadership.
1. Incoming freshmen must complete and pass UNIV 1010 Freshman Seminar and the corresponding school-related freshman seminar course. Erik Jonsson School of Engineering and Computer Science majors must enroll and receive credit for ECS 1200 which will satisfy the UNIV 1010 graduation requirement. Students, including transfer students, who complete their core curriculum at UT Dallas must take UNIV 2020.

2. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

3. Semester credit hours fulfill the communication component of the Core Curriculum.

4. Three semester credit hours of Calculus are counted under Mathematics Core, and five semester credit hours of Calculus are counted as Component Area Option Core.

5. Six semester credit hours of Physics are counted under Science core, and one semester credit hour of Physics (PHYS 2125) is counted as Component Area Option Core.

6. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.

7. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.

8. Semester credit hours fulfill the communication elective of the Core Curriculum.

Updated: 2015-03-26 17:35:43