Computer Science (BS) and Software Engineering (BS)

The Computer Science Department offers the BS degree in Computer Science and the BS degree in Software Engineering. Both are based on a solid foundation of mathematics, including calculus, linear algebra, and discrete mathematics. These programs of study are designed to offer students opportunities to prepare for an industrial, business, or governmental career in a rapidly changing profession and to prepare for graduate study in a field in which further education is strongly recommended. The two programs have the same basis in core computer science, including the analysis of algorithms and data structures, modern programming methodologies, and the study of operating systems. The Computer Science program continues with courses in advanced data structures, programming languages, telecommunications networks, and automata theory, while the Software Engineering program include courses in requirements engineering, software validation and testing, and software architecture, culminating in a challenging project course in which students must demonstrate use of software engineering techniques. Both programs offer a rich choice of elective studies, including courses in artificial intelligence, computer graphics, databases, and compiler design. The school offers a "fast track" BS / MS option; see Fast Track Baccalaureate/Master's Degree Program.

Faculty

Professor Emeritus: Klaus Truemper

Associate Professors: Sergey Bereg, Lawrence Chung, Jorge A. Cobb, Kendra M. L. Cooper, Xiaohu Guo, Kevin Hamlen, Murat Kantarcioglu, Yang Liu, Andrian Marcus, Neeraj Mittal, Yu-Chung (Vincent) Ng, Kamil Sarac, Haim Schweitzer, Rym Zalila-Wenkstern

Assistant Professors: Alvaro Cárdenas, Vibhav Gogate, Zhiqiang Lin, Cong Liu, Ryan McMahan, Nicholas Ruozzi, Lingming Zhang

Senior Lecturers: Ebru Cankaya, Michael Christiansen, John Cole, Chris I. Davis, Timothy (Tim) Farage, Neeraj Gupta, Shyam Karra, Pushpa Kumar, Linda Morales, Nhut Nguyen, Greg Ozbirn, Mark Paulk, Miguel Razo-Razo, William (Bill) Semper, Charles Shields Jr., Jason W. Smith, Janell Straach, Jeyakesavan (Jey) Veerasamy, Don G. Vogel

Mission of the Department of Computer Science

The mission of the Department of Computer Science is to prepare undergraduate and graduate students for productive careers in industry, academia, and government by providing an outstanding environment for teaching, learning, and research in the theory and applications of computing. The Department places high priority on establishing and
maintaining innovative research programs to enhance its education quality and make it an important regional, national, and international resource center for discovering, integrating and applying new knowledge and technologies.

Bachelor of Science in Computer Science (BS)

Goals for the Computer Science Program

The undergraduate Computer Science program is committed to provide students with a high-quality education and prepare them for long and successful careers in industry and government. Our graduates, while eminently ready for immediate employment, will also be fully ready for focused training as required for specific positions in Computer Science and closely related areas. Graduates interested in highly technical careers, research, and/or academia will be fully prepared to further their education in graduate school.

Program Educational Objectives for Computer Science

Within a few years after graduation, graduates of the Computer Science program should:

• Have a successful, long-lived, computer science based career path.
• Meet the needs of industry or academia.
• Contribute to, and/or lead, computer science based teams.
• Actively pursue continuing (lifelong) learning.

ABET Accreditation

The BS program in Computer Science is accredited by the Computing Accreditation Commission of ABET, www.abet.org.

Bachelor of Science in Computer Science

Degree Requirements (124 semester credit hours)

I. Core Curriculum Requirements: 42 semester credit hours

Communication: 6 semester credit hours

RHET 1302 Rhetoric

ECS 3390 Professional and Technical Communication

Mathematics: 3 semester credit hours

MATH 2413 Differential Calculus

or MATH 2417 Calculus I

Life and Physical Sciences: 6 semester credit hours

PHYS 2325 Mechanics

https://catalog.utdallas.edu/2014/undergraduate/programs/ecs/computer-science
PHYS 2326 Electromagnetism and Waves

Language, Philosophy and Culture: 3 semester credit hours
Select any 3 semester credit hours from Language, Philosophy and Culture core courses (see advisor)

Creative Arts: 3 semester credit hours
Select any 3 semester credit hours from Creative Arts core courses (see advisor)

American History: 6 semester credit hours
Select any 6 semester credit hours from American History core courses (see advisor)

Government / Political Science: 6 semester credit hours
- [GOVT 2305](#) American National Government
- [GOVT 2306](#) State and Local Government

Social and Behavioral Sciences: 3 semester credit hours
- [ECS 3361](#) Social Issues and Ethics in Computer Science and Engineering

Component Area Option: 6 semester credit hours
- [MATH 2413](#) Differential Calculus
 - or [MATH 2417](#) Calculus I
- [MATH 2419](#) Calculus II
- [PHYS 2125](#) Physics Laboratory

II. Major Requirements: 68 semester credit hours

Major Preparatory Courses: 20 semester credit hours beyond Core Curriculum
- [ECS 1200](#) Introduction to Engineering and Computer Science
- [CS 1337](#) Computer Science I
- [CS 2305](#) Discrete Mathematics for Computing I
- [CS 2336](#) Computer Science II
- [MATH 2413](#) Differential Calculus
 - or [MATH 2417](#) Calculus I
- [MATH 2418](#) Linear Algebra
- [MATH 2414](#) Integral Calculus
 - or [MATH 2419](#) Calculus II

PHYS 2125 Physics Laboratory I⁵
PHYS 2126 Physics Laboratory II
PHYS 2325 Mechanics⁵
PHYS 2326 Electromagnetism and Waves⁵
4 hours Science Elective

Major Core Courses: 39 semester credit hours beyond Core Curriculum
CS 3162 Professional Responsibility in Computer Science and Software Engineering
CS 3305 Discrete Mathematics for Computing II
CS 3340 Computer Architecture
CS 3341 Probability and Statistics in Computer Science and Software Engineering
CS 3345 Data Structures and Introduction to Algorithmic Analysis
CS 3354 Software Engineering
CS 3376 C/C++ Programming in a UNIX Environment
ECS 3361 Social Issues and Ethics in Computer Science and Engineering⁶
ECS 3390 Professional and Technical Communication³
CS 4141 Digital Systems Laboratory
CS 4337 Organization of Programming Languages
CS 4341 Digital Logic and Computer Design
CS 4348 Operating Systems Concepts
CS 4349 Advanced Algorithm Design and Analysis
CS 4384 Automata Theory
CS 4485 Computer Science Project

Major Guided Electives: 9 semester credit hours
CS guided electives are 4000 level CS courses approved by the student's CS advisor. The following courses may be used as guided electives without the explicit approval of an advisor:
CS 4314 Intelligent Systems Analysis
CS 4315 Intelligent Systems Design
CS 4334 Numerical Analysis
CS 4336 Advanced Java
CS 4347 or SE 4347 Database Systems
CS 4352 Human Computer Interactions I

https://catalog.utdallas.edu/2014/undergraduate/programs/ecs/computer-science
III. Elective Requirements: 14 semester credit hours

Free Electives: 14 semester credit hours

Both lower- and upper-division courses may count as free electives but students must complete at least 51 semester credit hours of upper-division courses to qualify for graduation.

Fast Track Baccalaureate/Master’s Degrees

In response to the need for post-baccalaureate education in the exciting field of computer science, a Fast Track program is available to well-qualified UT Dallas undergraduate students. At the end of five years of successful study, it is possible to earn both the BS and the MS degree in Computer Science (or MS in Software
Engineering). Qualified seniors may take up to 15 graduate semester credit hours that may be used to complete the baccalaureate degree and also to satisfy requirements for the master’s degree. Interested students should see the Associate Dean of Undergraduate Education (ADU) for specific requirements.

Honors Programs

The Department of Computer Science offers two Honors Programs. The first program is an upper-division honors program for outstanding students in the BS in Computer Science and BS in Software Engineering degree programs. This Honors program offers special sections of designated classes and other activities designed to enhance the educational experience of exceptional students. Admission to this Honors program requires a 3.500 or better GPA (grade point average) in at least 30 semester credit hours of coursework. Graduation with Honors requires a 3.500 or better GPA and completion of at least 6 honors classes, including a Senior Thesis or Senior Design Project class. For more details, contact the Office of Undergraduate Advising (ECS South 2.502; 972-883-2004).

Departmental Honors with Distinction may be awarded to students whose Senior Thesis or Senior Design Project is judged by a faculty committee to be of exemplary quality. Only students graduating with Departmental Honors are eligible. Thesis/projects must be submitted by the deadline that applies to MS Theses and PhD Dissertations in the graduating semester to allow for proper evaluation. Students interested in Honors with Distinction are encouraged to start working on their thesis/project a year prior to graduation.

The second program, called Computer Science Computing Scholars (CS²) is an intense Bachelor of Science in Computer Science Degree Program created for exceptionally gifted students who wish to pursue a demanding course of study enriched throughout with research experiences. The Computing Scholars Program has a specially designed curriculum. Courses integrate discussion of current research, recent discoveries, and open problems into a rich logical progression of firmly related topics. Course numbers for the Core Curriculum Requirements and Major Requirements are the same as those for the Bachelor of Science in Computer Science, but Computing Scholars take honors versions of the following courses: ECS 1200, CS 2305, CS 3305, CS 3340, CS 3341, CS 3345, CS 3354, CS 4141, CS 4337, CS 4341, CS 4348, CS 4349, CS 4384, and CS 4485.

Admission to the program is mainly by nomination and invitation. Those invited to join the Computing Scholars Honors Program will have successfully completed a full and challenging high school curriculum, will have achieved high scores on the SAT or ACT tests, and will be about to graduate from high school, or equivalent, with high class rank. Successful participants will graduate with the added distinction of a Computing Scholars Honors Diploma.

For more information about this program students should contact the Computer Science Department leadership.

Certificates

A Certificate in Information Assurance can be obtained by completing the following (as well as any required prerequisites):

- CS 4389 Data and Applications Security
- CS 4393 Computer and Network Security
The certificate is intended for those individuals who are working in the industry and who already have background similar to a BS degree. CS and SE majors that complete the required classes, as well as students that complete the Minor in Information Assurance will be awarded certificates in Information Assurance.

1. Incoming freshmen must complete and pass UNIV 1010 Freshman Seminar and the corresponding school-related freshman seminar course. Erik Jonsson School of Engineering and Computer Science majors must enroll and receive credit for ECS 1200 which will satisfy the UNIV 1010 graduation requirement. Students, including transfer students, who complete their core curriculum at UT Dallas must take UNIV 2020.

2. Curriculum Requirements can be fulfilled by other approved courses. The courses listed are recommended as the most efficient way to satisfy both Core Curriculum and Major Requirements at UT Dallas.

3. Semester credit hours fulfill the communication component of the Core Curriculum.

4. Three semester credit hours of Calculus are counted under Mathematics Core, and five semester credit hours of Calculus are counted as Component Area Option Core.

5. Six semester credit hours of Physics are counted under Science core, and one semester credit hour of Physics (PHYS 2125) is counted as Component Area Option Core.

6. Semester credit hours contribute to the Social and Behavioral Sciences component of the Core Curriculum.

7. Transfer students with sufficient background may petition to substitute upper-division semester credit hours in the major for this class.