Electrical Engineering: Signal Processing & Communications

EESC 5350 Signals, Systems, and Digital Communications (3 semester hours) Advanced methods of analysis of electrical networks and linear systems. Laplace transforms, Fourier series, and Fourier transforms. Response of linear systems to step, impulse, and sinusoidal inputs. Convolution, system functions, and frequency response. Z transforms and digital systems. Fundamentals of digital communication systems such as information, digital transmission, channel capacity, modulation and demodulation techniques are introduced. Signaling schemes and performance of binary as well as M-ary modulated digital communication systems are introduced. Overall design considerations and performance evaluation of various digital communication systems are discussed. Prerequisite: **ENGR 3300** or equivalent. (3-0) R

EESC 5360 Introduction to Communications and Signal Processing (3 semester hours) This course is designed to provide the necessary background for someone with a technical degree to enter the M.S.E.E. program in the Communications and Signal Processing concentration. It will focus on linear systems theory, to include Fourier series, Fourier and Laplace transforms, transfer functions, frequency response, and convolution. It will also include introductions to the solution of ordinary differential equations and to communications systems. Credit does not apply to the 33 hour M.S.E.E. requirement. Prerequisites: One year of calculus and one semester of probability theory. (3-0) R

EESC 6340 Introduction to Telecommunications Networks (3 semester hours) Circuit, message and packet switching. The hierarchy of the ISO-OSI Layers. The physical layer: channel characteristics, coding, and error detection. The data link control layer: retransmission strategies, framing, multiaccess protocols, e.g., Aloha, slotted Aloha, CSMA, and CSMA/CD. The network layer: routing, broadcasting, multicasting, flow control schemes. Co-requisite: **EESC 6349**. (3-0) Y

EESC 6341 Information Theory I (3 semester hours) Self information, mutual information, discrete memoryless sources, entropy, source coding for discrete memoryless channels, homogeneous Markov sources, discrete memoryless channels, channel capacity, converse to the coding theorem, noisy channel coding theorem, random coding exponent, Shannon limit. Prerequisite: **ENGR 3341**. (3-0) R

EESC 6343 Detection and Estimation Theory (3 semester hours) Parameter estimation. Least-square, mean-square, and minimum-variance estimators. Maximum A Posteriori (MAP) and Maximum-Likelihood (ML) estimators. Bayes estimation. Cramer-Rao lower bound. BLUE estimator and Wiener filtering. Prerequisite: **EESC 6349**. (3-0) R

EESC 6344 Coding Theory (3 semester hours) Groups, fields, construction and properties of Galois fields, error detection and correction, Hamming distance, linear block codes, syndrome decoding of linear block codes, cyclic codes, BCH codes, error trapping decoding and majority logic decoding of cyclic codes, non-binary codes, Reed Solomon codes, burst error correcting codes, convolutional codes, Viterbi decoding of convolutional codes. Prerequisite: **EESC 6352**. (3-0) R

EESC 6349 (MECH 6312) Random Processes (3 semester hours) Random processes concept. Stationarity and independence. Auto-correlation and cross-correlation functions, spectral characteristics. Linear systems with random inputs. Special topics and applications. Prerequisite: **EE 3302** or **MECH 6300** and **ENGR 3341** or equivalent background in probability and statistics. (3-0) Y

EESC 6350 Signal Theory (3 semester hours) Signal processing applications and signal spaces,
vector spaces, matrix inverses and orthogonal projections, four fundamental subspaces, least
squares and minimum norm solutions, the SVD and principal component analysis, subspace
approximation, infinite dimensional spaces, linear operators, norms, inner products and Hilbert
spaces, projection theorems, spectral properties of Hermitian operators, Hilbert spaces of
random variables, linear minimum variance estimation and the Levinson-Durbin algorithm,
genral optimization over Hilbert spaces, methods and applications of optimization.
Prerequisite: EE 3302 or equivalent. (3-0) Y

EESC 6352 Digital Communication Systems (3 semester hours) This course covers basic
principles of digital communications. The topics include introduction to source coding, signal
representations, various digital modulation and transmission schemes, demodulators and
detectors, error performance evaluations, introduction to channel coding, link budget, channel
capacity and system design considerations. Overviews of various communication systems and
their applications are also presented. Prerequisite: EESC 6349 or equivalent. (3-0) Y

EESC 6353 Broadband Digital Communication (3 semester hours) Characterization of
broadband wireline and wireless channels. MAP and ML detection. Intersymbol Interference
(ISI) effects. Equalization methods to mitigate ISI including single-carrier and multi-carrier
techniques. Equalization techniques and structures including linear, decision-feedback,
precoding, zero-forcing, mean square-error, FIR versus IIR. Multi-Input Multi-Output (MIMO)
Equalization. Implementation issues including complexity, channel estimation, error
propagation, etc. Real-world case studies from Digital Subscriber Lines (DSL) and wireless
systems. Students work individually or in small teams on project and present their findings to
class. Prerequisites: EE 4360 and knowledge of MATLAB. (3-0) T

EESC 6360 Digital Signal Processing I (3 semester hours) Analysis of discrete time signals and
systems, Z-transform, discrete Fourier transform, fast Fourier transform, analysis and design of
digital filters. Prerequisite: ENGR 3302 or EE 4361 or equivalent. (3-0) Y

EESC 6361 Digital Signal Processing II (3 semester hours) Continuation of EESC 6360. Includes
advanced topics in signal processing such as: Digital filter structures, digital filter design and
implementation methods, multirate digital signal processing, linear prediction and optimum
filtering, spectral analysis and estimation methods. Prerequisite: EESC 6360. (3-0) T

EESC 6362 Introduction to Speech Processing (3 semester hours) Introduction to the
fundamentals of speech signal processing and speech applications. Speech analysis and
speech synthesis techniques, speech enhancement and speech coding techniques including
ADPCM and linear-predictive based methods such as CELP. Prerequisite: EESC 6360. (3-0) Y

EESC 6363 Digital Image Processing (3 semester hours) Image formation, image sampling, 2D
Fourier transform and properties, image wavelet transform, image enhancement in spatial and
frequency domains, image restoration, color image processing, image segmentation, edge
detection, morphological operations, object representation and description, introduction to
image compression. Prerequisites: EE 4361 or equivalent and knowledge of C or MATLAB. (3-0)
T

EESC 6364 Pattern Recognition (3 semester hours) Pattern recognition system, Bayes decision
theory, maximum likelihood and Bayesian parametric classifiers, linear discriminant functions
and decision boundaries, density estimation and nonparametric classifiers, unsupervised
classification and clustering, multilayer neural networks, decision trees, classifier comparison.
Prerequisite: Knowledge of C or MATLAB. Co-requisite: EESC 6349. (3-0) T

EESC 6365 Adaptive Signal Processing (3 semester hours) Adaptive signal processing algorithms
learn the properties of their environments. Transversal and lattice versions of the Least Mean
Squares (LMS) and Recursive Least Squares (RLS) adaptive filter algorithms and other modern
algorithms will be studied. These algorithms will be applied to network and acoustic echo
cancellation, speech enhancement, channel equalization, interference rejection, beam forming,
direction finding, active noise control, wireless systems, and others. Prerequisites: EESC 6349.
E
EESC 6360 and knowledge of matrix algebra. (3-0) T
EESC 6366 Speech and Speaker Recognition (3 semester hours) Introduction to concepts in automatic recognition methods for speech applications; the primary emphasis is for automatic speech recognition and speaker identification techniques. Topics include speech features for recognition, hidden Markov models (HMMs) for acoustic and language applications (speech recognition, dialect/language recognition), Gaussian mixture models (GMMs) for speaker characterization, robustness issues to address noise and channel conditions for automatic recognition. (3-0) Y
EESC 6367 Applied Digital Signal Processing (3 semester hours) Implementation of signal processing algorithms, combination of textual and graphical programming of DSP systems, fixed-point versus floating-point, FPGA/DSP chip architecture, FPGA/DSP software development tools, code optimization, application project. Prerequisites: **EE 4361** or equivalent and knowledge of C or MATLAB. (2-3) Y
EESC 6368 Multimodal Signal Processing (3 semester hours) Theory and applications in the field of multimodal signal processing. Robustness and performance of systems by considering cross-modal integration. Statistical algorithms and machine learning methods used for fusion/fission of multimodal content at feature, decision and model level. Common graphical models used in multimodal analysis including Dynamic Bayesian Network, Product HMM, Multistream HMM, coupled HMM, Factorial HMM, Input Output HMM and segmental models. Prerequisite: **ENG 3341** or equivalent. Recommended Co-requisite: **EESC 6349**. (3-0) T
EESC 6390 Introduction to Wireless Communication Systems (3 semester hours) Principles, practice, and system overview of mobile systems. Modulation, demodulation, coding, encoding, and multiple-access techniques. Performance characterization of mobile systems. Prerequisite: **EE 3350** or equivalent. (3-0) Y
EESC 6391 Signaling and Coding for Wireless Communication Systems (3 semester hours) Study of signaling and coding for wireless communication systems. Topics which will be covered include digital modulation schemes, digital multiple access technologies, their performance under wireless channel impairments, equalization, channel coding, interleaving, and diversity schemes. Prerequisites: **EESC 6352** and **EESC 6390**. (3-0) T
EESC 6392 Propagation and Devices for Wireless Communications (3 semester hours) Mobile communication fundamentals, models of wave propagation, simulation of electromagnetic waves in the cellular environment, multipath propagation, compensation for fading, mobile and cell antenna designs, problems of interference and incompatibility, design of active and passive cellular components, comparison of analog and digital cellular designs. Prerequisites: **EE 4301** or equivalents. **EESC 6390**. (3-0) R
EESC 6393 Imaging Radar Systems Design and Analysis (3 semester hours) Radar systems, antenna systems, the radar equation, electromagnetic waves scattering from targets, radar signal and noise, detection and extraction of signal from noise or clutter, range and Doppler profiles, radar image formation, real aperture radar imaging, SAR imaging, ISAR imaging, image distortion, super resolution radar imaging techniques, and advanced holographic radar imaging techniques. Prerequisites: **EE 3350** and **EE 4301** or equivalents. (3-0) T
EESC 6395 Wireless Sensor Systems and Networks (3 semester hours) Sensor mote architecture and design. Sensor network types, architecture and protocol stack. Studies on and design of physical layer, data link layer, network layer, transport layer, and application layer. Time synchronization, localization, topology, mobility and task management issues in wireless sensor networks. Security and privacy issues. Case studies on applications. Prerequisite: **ECS 4390** or equivalent. (3-0) T
EESC 7v84 Special Topics in Telecommunications (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) ([1-6]-0) R
EESC 7v85 Special Topics in Signal Processing (1-6 semester hours) For letter grade credit only.

https://catalog.utdallas.edu/2013/graduate/courses/eesc
EESC 7v86 Special Topics in Wireless Communications (1-6 semester hours) For letter grade credit only. (May be repeated to a maximum of 9 hours.) [(1-6)-0] R