Erik Jonsson School of Engineering & Computer Science

Department of Materials Science and Engineering

Department Faculty

Professors: Orlando Auciello, Yves J. Chabal, Kyeongjae (KJ) Cho, Massimo V. Fischetti, Bruce E. Gnade, Julia W. P. Hsu, Jiyoung Kim, Moon J. Kim, Robert M. Wallace

Professor Emeritus: Don W. Shaw

Associate Professors: Lev D. Gelb, Manuel Quevedo-Lopez, Amy V. Walker

Assistant Professors: Christopher L. Hinkle, Walter E. Voit, Chadwin D. Young

Adjunct Faculty: Sheela Aboud (KJ), Husam Alshareef (KAUST, Saudia Arabia), Glen Birdwell (US Army Research Laboratory), Luigi Colombo (Texas Instruments), Mathew David Halls (Materials Design), Dale L. Huber (Sandia National Laboratories), Richard Irwin (Texas Instruments), Prashant Majhi (SEMATECH, Austin, Texas), Steven Mick (Protochips, Inc.), Srimath Muthukumar (Maxim Integrated), Bhabendra Pradahn (NanoHoldings LLC), Bin Shan (Hua-Zhong University of Science and Technology), Purushothaman Srinivasan (Texas Instruments), Scott Summerfelt (Texas Instruments), Eric M. Vogel (Georgia Tech), Weichao Wang (Nanostellar, Inc.)

Objectives

The objective of the Master of Science (MS) degree in materials science and engineering is to provide intensive preparation for the professional practice in modern materials science by those engineers and scientists who wish to continue their education. Courses are offered at times and locations convenient for the student who is employed on a full-time basis.

The objective of the Doctor of Philosophy (PhD) program in materials science and engineering is to prepare individuals to perform original, cutting-edge research in materials science, particularly in the areas of nano-structured materials, electronics, optical and magnetic materials, bio-mimetic materials, polymeric materials, MEMS materials and systems, organic electronics, and advanced processing of modern materials.
Scholarship Opportunities

The Erik Jonsson School of Engineering and Computer Science offers competitive scholarship awards for very well qualified students. Interested students should request application materials by contacting the Department of Materials Science and Engineering.

Master of Science in Materials Science and Engineering

33 hours minimum

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

A student lacking undergraduate prerequisites for graduate courses in Materials Science and Engineering must complete these prerequisites or receive approval from the graduate advisor and the course instructor. A diagnostic exam may be required. Specific admission requirements are as follows:

- Student has met standards equivalent to those currently required for admission to the PhD or Master's degree programs in Materials Science, Electrical Engineering, Chemistry, Physics, or Biology.
- A grade-point average in undergraduate-level coursework of 3.5 or better on a 4-point scale.
- GRE revised scores which are recommended as 154 or above, 154 or above, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Students, who fulfill only some of the above requirements, if admitted conditionally, will be required to take graduate level courses as needed to make up any deficiencies.

Degree Requirements

The University's general degree requirements are discussed on the Graduate Policies and Procedures page (catalog.utdallas.edu/2013/graduate/policies/policy).

The MSEN MS degree requires a minimum of 33 semester credit hours.

All students must have an academic advisor and an approved degree plan. These are based upon the student's choice of concentration. Courses taken without advisor approval will not count toward the 33 semester-hour requirement. Successful completion of the approved course of studies leads to the MS degree.
MS students undertaking the non-thesis option must complete at least 33 semester credit hours of coursework with a grade of B or better.

MS students undertaking the thesis option must carry out a research project under the direction of a faculty or affiliated faculty in Materials Science and Engineering, and complete and defend a thesis on the research project, but they need only complete the four core courses and 9 semester credit hours of advanced coursework. A Supervisory Committee will be appointed once the faculty member accepts the student for a research project. The rules for the thesis defense are specified by the Office of the Dean of Graduate Studies.

For each of the proposed degree programs, students must obtain a grade of B- or better in each class and maintain an average core class GPA of at least 3.0 to remain in good standing and satisfy their degree requirements:

MSEN 5310 Thermodynamics of Materials
MSEN 5360 Materials Characterization
MSEN 6324 (EEMF 6324) Electronic, Optical and Magnetic Materials
MSEN 6319 Quantum Mechanics for Materials Scientists

Note: the presence of a course number in parentheses indicates that this course is cross-listed in another department.

A minimum of 9 semester credit hours of advanced coursework is required, from the following list:

MSEN 5320 Materials Science for Sustainable Energy
MSEN 5340 (CHEM 5340) Advanced Polymer Science and Engineering
MSEN 5361 Fundamentals of Surface and Thin Film Analysis
MSEN 5370 Ceramics and Metals
MSEN 5375 Electronic Devices Based On Organic Solids
MSEN 5377 (PHYS 5377) Computational Physics of Nanomaterials
MSEN 6310 (MECH 6367) Mechanical Properties of Materials
MSEN 6320 (EEMF 6320) Fundamentals of Semiconductor Devices
MSEN 6327 Semiconductor Device Characterization
MSEN 6330 Phase Transformations
MSEN 6339 Nanostructured Materials: Synthesis, Properties and Applications
MSEN 6340 Advanced Electron Microscopy
MSEN 6350 Imperfections in Solids
MSEN 6362 Diffraction Science
These courses are intended to provide greater depth and advanced training in areas broadly relevant to Materials Science and Engineering research.

The remaining credit hours are to be taken from the following list of Specialized Courses (or approved electives from Physics, Chemistry, Biology, Electrical Engineering, Mechanical Engineering or other departments):

- **MSEN 5300 (PHYS 5376)** Introduction to Materials Science
- **MSEN 5331 (CHEM 5331)** Advanced Organic Chemistry I
- **MSEN 5333 (CHEM 5333)** Advanced Organic Chemistry II
- **MSEN 5341 (CHEM 5341)** Advanced Inorganic Chemistry I
- **MSEN 5344** Thermal Analysis
- **MSEN 5353** Integrated Circuit Packaging
- **MSEN 5355 (CHEM 5355)** Analytical Techniques I
- **MSEN 5356 (CHEM 5356)** Analytical Techniques II
- **MSEN 5371 (PHYS 5371)** Solid State Physics
- **MSEN 5383 (PHYS 5383, MECH 5383, and EEMF 5383)** Plasma Technology
- **MSEN 5410 (BIOL 5410)** Biochemistry
- **MSEN 5440 (BIOL 5440)** Cell Biology
- **MSEN 6313 (EEOP 6313)** Semiconductor Opto-Electronic Devices
- **MSEN 6321 (EEMF 6321)** Active Semiconductor Devices
- **MSEN 6322 (EEMF 6322, MECH 6348)** Semiconductor Processing Technology
- **MSEN 6341** Advanced Electron Microscopy Laboratory
- **MSEN 6348 (EEMF 6348, MECH 6341)** Lithography and Nanofabrication
- **MSEN 6355 (BMEN 6355)** Nanotechnology and Sensors
- **MSEN 6358 (BIOL 6358)** Bionanotechnology
- **MSEN 6361** Deformation Mechanisms in Solid Materials
- **MSEN 6371 (PHYS 6371)** Advanced Solid State Physics
- **MSEN 6374 (PHYS 6374)** Optical Properties of Solids
- **MSEN 6377 (PHYS 6377)** Physics of Nanostructures: Carbon Nanotubes, Fullerenes, Quantum Wells, Dots and Wires
- **MSEN 6382 (EEMF 6382, MECH 6347)** Introduction to MEMS
- **MSEN 7320 (EEMF 7320)** Advanced Semiconductor Device Theory
Specialized Courses

- **MSEN 7V80** Special Topics in Materials Science and Engineering
- **MSEN 8V40** Individual Instruction in Materials Science and Engineering
- **MSEN 8V70** Research In Materials Science and Engineering
- **MSEN 8V98** Thesis

The specialized courses are intended to provide Materials Science and Engineering graduate students with expertise in a specific field of endeavor.

Doctor of Philosophy in Materials Science and Engineering

75 hours minimum beyond the baccalaureate degree

Admission Requirements

The University's general admission requirements are discussed on the [Graduate Admission page](catalog.utdallas.edu/2013/graduate/admission).

A student lacking undergraduate prerequisites for graduate courses in Materials Science and Engineering must complete these prerequisites or receive approval from the graduate advisor and the course instructor.

A diagnostic exam may be required. Specific admission requirements follow.

The student entering the MSEN program should meet the following guidelines:

- Student has met standards equivalent to those currently required for admission to the PhD or Master's degree programs in Materials Science, Electrical Engineering, Chemistry, Physics, or Biology.
- A grade-point average in undergraduate-level coursework of 3.5 or better on a 4-point scale.
- GRE revised scores which are recommended as 154 or above, 154 or above, and 4 for the verbal, quantitative, and analytical writing components, respectively, are advisable based on our experience with student success in the program.

Students who fulfill some of the above requirements, if admitted conditionally, will be required to take graduate level courses as needed to make up any deficiencies.

Degree Requirements

The University's general degree requirements are discussed on the [Graduate Policies and Procedures page](catalog.utdallas.edu/2013/graduate/policies/policy).

The MSEN PhD requires a minimum of 75 semester hours beyond the baccalaureate degree. These credits must include at least 30 semester hours of graduate-level courses in MSEN.
All students must have an academic advisor and an approved degree plan. Courses taken without advisor approval will not count toward the 75 semester-hour requirement.

Each doctoral student must carry out original research in the area of Materials Science and Engineering, under the direction of a faculty or affiliated faculty of Materials Science and Engineering, and complete and defend a dissertation on the research project. A Supervisory Committee will be appointed once the faculty member accepts the student for a research project.

Students must be admitted to doctoral candidacy by passing a Qualifying Exam, which will be administered near the time that the students have completed their coursework. Upon passing the Qualifying Exam, students must present and defend a Research Proposal with their Supervisory Committee within approximately nine months or sooner after passing the Qualifying Exam. The rules for the dissertation research and defense are specified by the Office of the Dean of Graduate Studies.

For the proposed degree program, students must obtain a grade of B- or better in each class and maintain an average core class GPA of at least 3.0 to remain in good standing and satisfy their degree requirements:

- **MSEN 5310** Thermodynamics of Materials
- **MSEN 5360** Materials Characterization
- **MSEN 6319** Quantum Mechanics for Materials Scientists
- **MSEN 6324** (EEMF 6324) Electronic, Optical and Magnetic Materials

Note: the presence of a course number in parentheses indicates that this course is cross-listed in another department.

A student may petition for waiver of core courses based on prior coursework of equivalent scope and level, and if the Department finds that the student has already mastered the course material, the student may replace that core course with elective courses for up to a total of twelve semester credit hours.

A minimum of 9 semester credit hours of advanced coursework is required, from the following list:

- **MSEN 5320** Materials Science for Sustainable Energy
- **MSEN 5340** (CHEM 5340) Advanced Polymer Science and Engineering
- **MSEN 5361** Fundamentals of Surface and Thin Film Analysis
- **MSEN 5370** Ceramics and Metals
- **MSEN 5375** Electronic Devices Based On Organic Solids
- **MSEN 5377** (PHYS 5377) Computational Physics of Nanomaterials
- **MSEN 6310** (MECH 6367) Mechanical Properties of Materials
MSEN 6320 (EEMF 6320) Fundamentals of Semiconductor Devices
MSEN 6327 Semiconductor Device Characterization
MSEN 6330 Phase Transformations
MSEN 6339 Nanostructured Materials: Synthesis, Properties and Applications
MSEN 6340 Advanced Electron Microscopy
MSEN 6350 Imperfections in Solids
MSEN 6362 Diffraction Science

These courses are intended to provide greater depth and advanced training in areas broadly relevant to Materials Science and Engineering research.

The remaining credit hours are to be taken from the following list of Specialized Courses (or approved electives from Physics, Chemistry, Biology, or Electrical Engineering, Mechanical Engineering, or other departments):

MSEN 5300 (PHYS 5376) Introduction to Materials Science
MSEN 5331 (CHEM 5331) Advanced Organic Chemistry I
MSEN 5333 (CHEM 5333) Advanced Organic Chemistry II
MSEN 5341 (CHEM 5341) Advanced Inorganic Chemistry I
MSEN 5344 Thermal Analysis
MSEN 5353 Integrated Circuit Packaging
MSEN 5355 (CHEM 5355) Analytical Techniques I
MSEN 5356 (CHEM 5356) Analytical Techniques II
MSEN 5371 (PHYS 5371) Solid State Physics
MSEN 5383 (PHYS 5383, MECH 5383, and EEMF 5383) Plasma Technology
MSEN 5410 (BIOL 5410) Biochemistry
MSEN 5440 (BIOL 5440) Cell Biology
MSEN 6313 (EEOP 6313) Semiconductor Opto-Electronic Devices
MSEN 6321 (EEMF 6321) Active Semiconductor Devices
MSEN 6322 (EEMF 6322, MECH 6348) Semiconductor Processing Technology
MSEN 6341 Advanced Electron Microscopy Laboratory
MSEN 6348 (EEMF 6348, MECH 6341) Lithography and Nanofabrication
MSEN 6355 (BMEN 6355) Nanotechnology and Sensors
The specialized courses are intended to provide Materials Science and Engineering graduate students with expertise in a specific field of endeavor.

Description of Facilities Available for Conducting Research

An extensive array of the materials characterization, synthesis, and processing tools exist in the Department for student use in research. Characterization capabilities include advanced high-resolution electron microscopy, x-ray diffraction, a large variety of surface analysis methods, and electrical characterization. Thin film deposition methods include atomic layer deposition, sputter deposition, thermal deposition, molecular beam epitaxy, chemical vapor deposition, pulsed laser deposition, and gas phase adsorption. Fabrication methods can be accomplished in the Cleanroom Research Laboratory as well (www.utdallas.edu/research/cleanroom). Computational modeling activities include studies from the atomistic to the macroscopic level. Details of the capabilities and faculty research can be obtained at: mse.utdallas.edu.